Cargando…

Brain hypoxia, neurocognitive impairment, and quality of life in people post-COVID-19

OBJECTIVE: Systemic hypoxia occurs in COVID-19 infection; however, it is unknown if cerebral hypoxia occurs in convalescent individuals. We have evidence from other conditions associated with central nervous system inflammation that hypoxia may occur in the brain. If so, hypoxia could reduce the qua...

Descripción completa

Detalles Bibliográficos
Autores principales: Adingupu, Damilola D., Soroush, Ateyeh, Hansen, Ayden, Twomey, Rosie, Dunn, Jeff F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10200033/
https://www.ncbi.nlm.nih.gov/pubmed/37210689
http://dx.doi.org/10.1007/s00415-023-11767-2
Descripción
Sumario:OBJECTIVE: Systemic hypoxia occurs in COVID-19 infection; however, it is unknown if cerebral hypoxia occurs in convalescent individuals. We have evidence from other conditions associated with central nervous system inflammation that hypoxia may occur in the brain. If so, hypoxia could reduce the quality of life and brain function. This study was undertaken to assess if brain hypoxia occurs in individuals after recovery from acute COVID-19 infection and if this hypoxia is associated with neurocognitive impairment and reduced quality of life. METHODS: Using frequency-domain near-infrared spectroscopy (fdNIRS), we measured cerebral tissue oxygen saturation (S(t)O(2)) (a measure of hypoxia) in participants who had contracted COVID-19 at least 8 weeks prior to the study visit and healthy controls. We also conducted neuropsychological assessments and health-related quality of life assessments, fatigue, and depression. RESULTS: Fifty-six percent of the post-COVID-19 participants self-reported having persistent symptoms (from a list of 18), with the most reported symptom being fatigue and brain fog. There was a gradation in the decrease of oxyhemoglobin between controls, and normoxic and hypoxic post-COVID-19 groups (31.7 ± 8.3 μM, 27.8 ± 7.0 μM and 21.1 ± 7.2 μM, respectively, p = 0.028, p = 0.005, and p = 0.081). We detected that 24% of convalescent individuals’ post-COVID-19 infection had reduced S(t)O(2) in the brain and that this relates to reduced neurological function and quality of life. INTERPRETATION: We believe that the hypoxia reported here will have health consequences for these individuals, and this is reflected in the correlation of hypoxia with greater symptomology. With the fdNIRS technology, combined with neuropsychological assessment, we may be able to identify individuals at risk of hypoxia-related symptomology and target individuals that are likely to respond to treatments aimed at improving cerebral oxygenation.