Cargando…
FNSAM: Image super-resolution using a feedback network with self-attention mechanism
BACKGROUND: High-resolution (HR) magnetic resonance imaging (MRI) provides rich pathological information which is of great significance in diagnosis and treatment of brain lesions. However, obtaining HR brain MRI images comes at the cost of extending scan time and using sophisticated expensive instr...
Autores principales: | Huang, Yu, Wang, Wenqian, Li, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10200178/ https://www.ncbi.nlm.nih.gov/pubmed/37066938 http://dx.doi.org/10.3233/THC-236033 |
Ejemplares similares
-
Edge-Enhanced with Feedback Attention Network for Image Super-Resolution
por: Fu, Chunmei, et al.
Publicado: (2021) -
Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
por: Huang, Chi-En, et al.
Publicado: (2021) -
Panchromatic Image Super-Resolution Via Self Attention-Augmented Wasserstein Generative Adversarial Network
por: Du, Juan, et al.
Publicado: (2021) -
Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
por: Zhang, Min, et al.
Publicado: (2021) -
Super-Resolution Swin Transformer and Attention Network for Medical CT Imaging
por: Hu, Jianhua, et al.
Publicado: (2022)