Cargando…

Deep learning for differentiating benign from malignant tumors on breast-specific gamma image

BACKGROUND: Breast diseases are a significant health threat for women. With the fast-growing BSGI data, it is becoming increasingly critical for physicians to accurately diagnose benign as well as malignant breast tumors. OBJECTIVE: The purpose of this study is to diagnose benign and malignant breas...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Xia, Dong, Mengchao, Yang, Dongzhu, Wang, Lianfang, Wang, Hongjie, Ma, Liyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10200206/
https://www.ncbi.nlm.nih.gov/pubmed/37038782
http://dx.doi.org/10.3233/THC-236007
Descripción
Sumario:BACKGROUND: Breast diseases are a significant health threat for women. With the fast-growing BSGI data, it is becoming increasingly critical for physicians to accurately diagnose benign as well as malignant breast tumors. OBJECTIVE: The purpose of this study is to diagnose benign and malignant breast tumors utilizing the deep learning model, with the input of breast-specific gamma imaging (BSGI). METHODS: A benchmark dataset including 144 patients with benign tumors and 87 patients with malignant tumors was collected and divided into a training dataset and a test dataset according to the ratio of 8:2. The convolutional neural network ResNet18 was employed to develop a new deep learning model. The model proposed was compared with neural network and autoencoder models. Accuracy, specificity, sensitivity and ROC were used to evaluate the performance of different models. RESULTS: The accuracy, specificity and sensitivity of the model proposed are 99.1%, 98.8% and 99.3% respectively, which achieves the best performance among all methods. Additionally, the Grad-CAM method is used to analyze the interpretability of the diagnostic results based on the deep learning model. CONCLUSION: This study demonstrates that the proposed deep learning method could help physicians diagnose benign and malignant breast tumors quickly as well as reliably.