Cargando…
Neural networks prediction of the protein-ligand binding affinity with circular fingerprints
BACKGROUND: Protein-ligand binding affinity is of significant importance in structure-based drug design. Recently, the development of machine learning techniques has provided an efficient and accurate way to predict binding affinity. However, the prediction performance largely depends on how molecul...
Autores principales: | Yin, Zuode, Song, Wei, Li, Baiyi, Wang, Fengfei, Xie, Liangxu, Xu, Xiaojun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10200229/ https://www.ncbi.nlm.nih.gov/pubmed/37066944 http://dx.doi.org/10.3233/THC-236042 |
Ejemplares similares
-
cRNAsp12 Web Server for the Prediction of Circular RNA Secondary Structures and Stabilities
por: Wang, Fengfei, et al.
Publicado: (2023) -
Structure-based protein–ligand interaction fingerprints for binding affinity prediction
por: Wang, Debby D., et al.
Publicado: (2021) -
SE-OnionNet: A Convolution Neural Network for Protein–Ligand Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2021) -
Improvement of Prediction Performance With Conjoint Molecular Fingerprint in Deep Learning
por: Xie, Liangxu, et al.
Publicado: (2020) -
GraphscoreDTA: optimized graph neural network for protein–ligand binding affinity prediction
por: Wang, Kaili, et al.
Publicado: (2023)