Cargando…
Metal-Free 2D/2D van der Waals Heterojunction Based on Covalent Organic Frameworks for Highly Efficient Solar Energy Catalysis
Covalent organic frameworks (COFs) have emerged as a kind of rising star materials in photocatalysis. However, their photocatalytic activities are restricted by the high photogenerated electron–hole pairs recombination rate. Herein, a novel metal-free 2D/2D van der Waals heterojunction, composed of...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10200743/ https://www.ncbi.nlm.nih.gov/pubmed/37211571 http://dx.doi.org/10.1007/s40820-023-01100-x |
Sumario: | Covalent organic frameworks (COFs) have emerged as a kind of rising star materials in photocatalysis. However, their photocatalytic activities are restricted by the high photogenerated electron–hole pairs recombination rate. Herein, a novel metal-free 2D/2D van der Waals heterojunction, composed of a two-dimensional (2D) COF with ketoenamine linkage (TpPa-1-COF) and 2D defective hexagonal boron nitride (h-BN), is successfully constructed through in situ solvothermal method. Benefitting from the presence of VDW heterojunction, larger contact area and intimate electronic coupling can be formed between the interface of TpPa-1-COF and defective h-BN, which make contributions to promoting charge carriers separation. The introduced defects can also endow the h-BN with porous structure, thus providing more reactive sites. Moreover, the TpPa-1-COF will undergo a structural transformation after being integrated with defective h-BN, which can enlarge the gap between the conduction band position of the h-BN and TpPa-1-COF, and suppress electron backflow, corroborated by experimental and density functional theory calculations results. Accordingly, the resulting porous h-BN/TpPa-1-COF metal-free VDW heterojunction displays outstanding solar energy catalytic activity for water splitting without co-catalysts, and the H(2) evolution rate can reach up to 3.15 mmol g(−1) h(−1), which is about 67 times greater than that of pristine TpPa-1-COF, also surpassing that of state-of-the-art metal-free-based photocatalysts reported to date. In particular, it is the first work for constructing COFs-based heterojunctions with the help of h-BN, which may provide new avenue for designing highly efficient metal-free-based photocatalysts for H(2) evolution. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40820-023-01100-x. |
---|