Cargando…
Predicting the COVID‐19 mortality among Iranian patients using tree‐based models: A cross‐sectional study
BACKGROUND AND AIMS: To explore the use of different machine learning models in prediction of COVID‐19 mortality in hospitalized patients. MATERIALS AND METHODS: A total of 44,112 patients from six academic hospitals who were admitted for COVID‐19 between March 2020 and August 2021 were included in...
Autores principales: | Aghakhani, Amirhossein, Shoshtarian Malak, Jaleh, Karimi, Zahra, Vosoughi, Fardis, Zeraati, Hojjat, Yekaninejad, Mir Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10200963/ https://www.ncbi.nlm.nih.gov/pubmed/37223657 http://dx.doi.org/10.1002/hsr2.1279 |
Ejemplares similares
-
An agent based architecture for high-risk neonate management at neonatal intensive care unit
por: Malak, Jaleh Shoshtarian, et al.
Publicado: (2018) -
Prevalence of food addiction in children and adolescents: A systematic review and meta‐analysis
por: Yekaninejad, Mir Saeed, et al.
Publicado: (2021) -
A systematic review and meta-analysis of the epidemiological characteristics of COVID-19 in children
por: Vosoughi, Fardis, et al.
Publicado: (2022) -
Prognostic and diagnostic values of non-coding RNAs as biomarkers for breast cancer: An umbrella review and pan-cancer analysis
por: Bahramy, Afshin, et al.
Publicado: (2023) -
Epidemiological pattern of pediatric trauma in COVID-19 outbreak: Data from a tertiary trauma center in Iran
por: Nabian, Mohammad Hossein, et al.
Publicado: (2020)