Cargando…

A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes

The AutoScore framework can automatically generate data-driven clinical scores in various clinical applications. Here, we present a protocol for developing clinical scoring systems for binary, survival, and ordinal outcomes using the open-source AutoScore package. We describe steps for package insta...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Feng, Ning, Yilin, Liu, Mingxuan, Li, Siqi, Saffari, Seyed Ehsan, Yuan, Han, Volovici, Victor, Ting, Daniel Shu Wei, Goldstein, Benjamin Alan, Ong, Marcus Eng Hock, Vaughan, Roger, Chakraborty, Bibhas, Liu, Nan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10200969/
https://www.ncbi.nlm.nih.gov/pubmed/37178115
http://dx.doi.org/10.1016/j.xpro.2023.102302
Descripción
Sumario:The AutoScore framework can automatically generate data-driven clinical scores in various clinical applications. Here, we present a protocol for developing clinical scoring systems for binary, survival, and ordinal outcomes using the open-source AutoScore package. We describe steps for package installation, detailed data processing and checking, and variable ranking. We then explain how to iterate through steps for variable selection, score generation, fine-tuning, and evaluation to generate understandable and explainable scoring systems using data-driven evidence and clinical knowledge. For complete details on the use and execution of this protocol, please refer to Xie et al. (2020),(1) Xie et al. (2022)(2), Saffari et al. (2022)(3) and the online tutorial https://nliulab.github.io/AutoScore/.