Cargando…

A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes

The AutoScore framework can automatically generate data-driven clinical scores in various clinical applications. Here, we present a protocol for developing clinical scoring systems for binary, survival, and ordinal outcomes using the open-source AutoScore package. We describe steps for package insta...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Feng, Ning, Yilin, Liu, Mingxuan, Li, Siqi, Saffari, Seyed Ehsan, Yuan, Han, Volovici, Victor, Ting, Daniel Shu Wei, Goldstein, Benjamin Alan, Ong, Marcus Eng Hock, Vaughan, Roger, Chakraborty, Bibhas, Liu, Nan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10200969/
https://www.ncbi.nlm.nih.gov/pubmed/37178115
http://dx.doi.org/10.1016/j.xpro.2023.102302
_version_ 1785045167234875392
author Xie, Feng
Ning, Yilin
Liu, Mingxuan
Li, Siqi
Saffari, Seyed Ehsan
Yuan, Han
Volovici, Victor
Ting, Daniel Shu Wei
Goldstein, Benjamin Alan
Ong, Marcus Eng Hock
Vaughan, Roger
Chakraborty, Bibhas
Liu, Nan
author_facet Xie, Feng
Ning, Yilin
Liu, Mingxuan
Li, Siqi
Saffari, Seyed Ehsan
Yuan, Han
Volovici, Victor
Ting, Daniel Shu Wei
Goldstein, Benjamin Alan
Ong, Marcus Eng Hock
Vaughan, Roger
Chakraborty, Bibhas
Liu, Nan
author_sort Xie, Feng
collection PubMed
description The AutoScore framework can automatically generate data-driven clinical scores in various clinical applications. Here, we present a protocol for developing clinical scoring systems for binary, survival, and ordinal outcomes using the open-source AutoScore package. We describe steps for package installation, detailed data processing and checking, and variable ranking. We then explain how to iterate through steps for variable selection, score generation, fine-tuning, and evaluation to generate understandable and explainable scoring systems using data-driven evidence and clinical knowledge. For complete details on the use and execution of this protocol, please refer to Xie et al. (2020),(1) Xie et al. (2022)(2), Saffari et al. (2022)(3) and the online tutorial https://nliulab.github.io/AutoScore/.
format Online
Article
Text
id pubmed-10200969
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-102009692023-05-23 A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes Xie, Feng Ning, Yilin Liu, Mingxuan Li, Siqi Saffari, Seyed Ehsan Yuan, Han Volovici, Victor Ting, Daniel Shu Wei Goldstein, Benjamin Alan Ong, Marcus Eng Hock Vaughan, Roger Chakraborty, Bibhas Liu, Nan STAR Protoc Protocol The AutoScore framework can automatically generate data-driven clinical scores in various clinical applications. Here, we present a protocol for developing clinical scoring systems for binary, survival, and ordinal outcomes using the open-source AutoScore package. We describe steps for package installation, detailed data processing and checking, and variable ranking. We then explain how to iterate through steps for variable selection, score generation, fine-tuning, and evaluation to generate understandable and explainable scoring systems using data-driven evidence and clinical knowledge. For complete details on the use and execution of this protocol, please refer to Xie et al. (2020),(1) Xie et al. (2022)(2), Saffari et al. (2022)(3) and the online tutorial https://nliulab.github.io/AutoScore/. Elsevier 2023-05-12 /pmc/articles/PMC10200969/ /pubmed/37178115 http://dx.doi.org/10.1016/j.xpro.2023.102302 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Protocol
Xie, Feng
Ning, Yilin
Liu, Mingxuan
Li, Siqi
Saffari, Seyed Ehsan
Yuan, Han
Volovici, Victor
Ting, Daniel Shu Wei
Goldstein, Benjamin Alan
Ong, Marcus Eng Hock
Vaughan, Roger
Chakraborty, Bibhas
Liu, Nan
A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes
title A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes
title_full A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes
title_fullStr A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes
title_full_unstemmed A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes
title_short A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes
title_sort universal autoscore framework to develop interpretable scoring systems for predicting common types of clinical outcomes
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10200969/
https://www.ncbi.nlm.nih.gov/pubmed/37178115
http://dx.doi.org/10.1016/j.xpro.2023.102302
work_keys_str_mv AT xiefeng auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT ningyilin auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT liumingxuan auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT lisiqi auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT saffariseyedehsan auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT yuanhan auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT volovicivictor auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT tingdanielshuwei auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT goldsteinbenjaminalan auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT ongmarcusenghock auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT vaughanroger auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT chakrabortybibhas auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT liunan auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT xiefeng universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT ningyilin universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT liumingxuan universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT lisiqi universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT saffariseyedehsan universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT yuanhan universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT volovicivictor universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT tingdanielshuwei universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT goldsteinbenjaminalan universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT ongmarcusenghock universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT vaughanroger universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT chakrabortybibhas universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes
AT liunan universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes