Cargando…
A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes
The AutoScore framework can automatically generate data-driven clinical scores in various clinical applications. Here, we present a protocol for developing clinical scoring systems for binary, survival, and ordinal outcomes using the open-source AutoScore package. We describe steps for package insta...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10200969/ https://www.ncbi.nlm.nih.gov/pubmed/37178115 http://dx.doi.org/10.1016/j.xpro.2023.102302 |
_version_ | 1785045167234875392 |
---|---|
author | Xie, Feng Ning, Yilin Liu, Mingxuan Li, Siqi Saffari, Seyed Ehsan Yuan, Han Volovici, Victor Ting, Daniel Shu Wei Goldstein, Benjamin Alan Ong, Marcus Eng Hock Vaughan, Roger Chakraborty, Bibhas Liu, Nan |
author_facet | Xie, Feng Ning, Yilin Liu, Mingxuan Li, Siqi Saffari, Seyed Ehsan Yuan, Han Volovici, Victor Ting, Daniel Shu Wei Goldstein, Benjamin Alan Ong, Marcus Eng Hock Vaughan, Roger Chakraborty, Bibhas Liu, Nan |
author_sort | Xie, Feng |
collection | PubMed |
description | The AutoScore framework can automatically generate data-driven clinical scores in various clinical applications. Here, we present a protocol for developing clinical scoring systems for binary, survival, and ordinal outcomes using the open-source AutoScore package. We describe steps for package installation, detailed data processing and checking, and variable ranking. We then explain how to iterate through steps for variable selection, score generation, fine-tuning, and evaluation to generate understandable and explainable scoring systems using data-driven evidence and clinical knowledge. For complete details on the use and execution of this protocol, please refer to Xie et al. (2020),(1) Xie et al. (2022)(2), Saffari et al. (2022)(3) and the online tutorial https://nliulab.github.io/AutoScore/. |
format | Online Article Text |
id | pubmed-10200969 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-102009692023-05-23 A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes Xie, Feng Ning, Yilin Liu, Mingxuan Li, Siqi Saffari, Seyed Ehsan Yuan, Han Volovici, Victor Ting, Daniel Shu Wei Goldstein, Benjamin Alan Ong, Marcus Eng Hock Vaughan, Roger Chakraborty, Bibhas Liu, Nan STAR Protoc Protocol The AutoScore framework can automatically generate data-driven clinical scores in various clinical applications. Here, we present a protocol for developing clinical scoring systems for binary, survival, and ordinal outcomes using the open-source AutoScore package. We describe steps for package installation, detailed data processing and checking, and variable ranking. We then explain how to iterate through steps for variable selection, score generation, fine-tuning, and evaluation to generate understandable and explainable scoring systems using data-driven evidence and clinical knowledge. For complete details on the use and execution of this protocol, please refer to Xie et al. (2020),(1) Xie et al. (2022)(2), Saffari et al. (2022)(3) and the online tutorial https://nliulab.github.io/AutoScore/. Elsevier 2023-05-12 /pmc/articles/PMC10200969/ /pubmed/37178115 http://dx.doi.org/10.1016/j.xpro.2023.102302 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Protocol Xie, Feng Ning, Yilin Liu, Mingxuan Li, Siqi Saffari, Seyed Ehsan Yuan, Han Volovici, Victor Ting, Daniel Shu Wei Goldstein, Benjamin Alan Ong, Marcus Eng Hock Vaughan, Roger Chakraborty, Bibhas Liu, Nan A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes |
title | A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes |
title_full | A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes |
title_fullStr | A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes |
title_full_unstemmed | A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes |
title_short | A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes |
title_sort | universal autoscore framework to develop interpretable scoring systems for predicting common types of clinical outcomes |
topic | Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10200969/ https://www.ncbi.nlm.nih.gov/pubmed/37178115 http://dx.doi.org/10.1016/j.xpro.2023.102302 |
work_keys_str_mv | AT xiefeng auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT ningyilin auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT liumingxuan auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT lisiqi auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT saffariseyedehsan auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT yuanhan auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT volovicivictor auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT tingdanielshuwei auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT goldsteinbenjaminalan auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT ongmarcusenghock auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT vaughanroger auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT chakrabortybibhas auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT liunan auniversalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT xiefeng universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT ningyilin universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT liumingxuan universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT lisiqi universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT saffariseyedehsan universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT yuanhan universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT volovicivictor universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT tingdanielshuwei universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT goldsteinbenjaminalan universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT ongmarcusenghock universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT vaughanroger universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT chakrabortybibhas universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes AT liunan universalautoscoreframeworktodevelopinterpretablescoringsystemsforpredictingcommontypesofclinicaloutcomes |