Cargando…
IPMN-LEARN: A linear support vector machine learning model for predicting low-grade intraductal papillary mucinous neoplasms
BACKGROUNDS/AIMS: We aimed to build a machine learning tool to help predict low-grade intraductal papillary mucinous neoplasms (IPMNs) in order to avoid unnecessary surgical resection. IPMNs are precursors to pancreatic cancer. Surgical resection remains the only recognized treatment for IPMNs yet c...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Association of Hepato-Biliary-Pancreatic Surgery
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201055/ https://www.ncbi.nlm.nih.gov/pubmed/37006188 http://dx.doi.org/10.14701/ahbps.22-107 |
_version_ | 1785045186758311936 |
---|---|
author | Hernandez-Barco, Yasmin Genevieve Daye, Dania Fernandez-del Castillo, Carlos F. Parker, Regina F. Casey, Brenna W. Warshaw, Andrew L. Ferrone, Cristina R. Lillemoe, Keith D. Qadan, Motaz |
author_facet | Hernandez-Barco, Yasmin Genevieve Daye, Dania Fernandez-del Castillo, Carlos F. Parker, Regina F. Casey, Brenna W. Warshaw, Andrew L. Ferrone, Cristina R. Lillemoe, Keith D. Qadan, Motaz |
author_sort | Hernandez-Barco, Yasmin Genevieve |
collection | PubMed |
description | BACKGROUNDS/AIMS: We aimed to build a machine learning tool to help predict low-grade intraductal papillary mucinous neoplasms (IPMNs) in order to avoid unnecessary surgical resection. IPMNs are precursors to pancreatic cancer. Surgical resection remains the only recognized treatment for IPMNs yet carries some risks of morbidity and potential mortality. Existing clinical guidelines are imperfect in distinguishing low-risk cysts from high-risk cysts that warrant resection. METHODS: We built a linear support vector machine (SVM) learning model using a prospectively maintained surgical database of patients with resected IPMNs. Input variables included 18 demographic, clinical, and imaging characteristics. The outcome variable was the presence of low-grade or high-grade IPMN based on post-operative pathology results. Data were divided into a training/validation set and a testing set at a ratio of 4:1. Receiver operating characteristics analysis was used to assess classification performance. RESULTS: A total of 575 patients with resected IPMNs were identified. Of them, 53.4% had low-grade disease on final pathology. After classifier training and testing, a linear SVM-based model (IPMN-LEARN) was applied on the validation set. It achieved an accuracy of 77.4%, with a positive predictive value of 83%, a specificity of 72%, and a sensitivity of 83% in predicting low-grade disease in patients with IPMN. The model predicted low-grade lesions with an area under the curve of 0.82. CONCLUSIONS: A linear SVM learning model can identify low-grade IPMNs with good sensitivity and specificity. It may be used as a complement to existing guidelines to identify patients who could avoid unnecessary surgical resection. |
format | Online Article Text |
id | pubmed-10201055 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Korean Association of Hepato-Biliary-Pancreatic Surgery |
record_format | MEDLINE/PubMed |
spelling | pubmed-102010552023-05-23 IPMN-LEARN: A linear support vector machine learning model for predicting low-grade intraductal papillary mucinous neoplasms Hernandez-Barco, Yasmin Genevieve Daye, Dania Fernandez-del Castillo, Carlos F. Parker, Regina F. Casey, Brenna W. Warshaw, Andrew L. Ferrone, Cristina R. Lillemoe, Keith D. Qadan, Motaz Ann Hepatobiliary Pancreat Surg Original Article BACKGROUNDS/AIMS: We aimed to build a machine learning tool to help predict low-grade intraductal papillary mucinous neoplasms (IPMNs) in order to avoid unnecessary surgical resection. IPMNs are precursors to pancreatic cancer. Surgical resection remains the only recognized treatment for IPMNs yet carries some risks of morbidity and potential mortality. Existing clinical guidelines are imperfect in distinguishing low-risk cysts from high-risk cysts that warrant resection. METHODS: We built a linear support vector machine (SVM) learning model using a prospectively maintained surgical database of patients with resected IPMNs. Input variables included 18 demographic, clinical, and imaging characteristics. The outcome variable was the presence of low-grade or high-grade IPMN based on post-operative pathology results. Data were divided into a training/validation set and a testing set at a ratio of 4:1. Receiver operating characteristics analysis was used to assess classification performance. RESULTS: A total of 575 patients with resected IPMNs were identified. Of them, 53.4% had low-grade disease on final pathology. After classifier training and testing, a linear SVM-based model (IPMN-LEARN) was applied on the validation set. It achieved an accuracy of 77.4%, with a positive predictive value of 83%, a specificity of 72%, and a sensitivity of 83% in predicting low-grade disease in patients with IPMN. The model predicted low-grade lesions with an area under the curve of 0.82. CONCLUSIONS: A linear SVM learning model can identify low-grade IPMNs with good sensitivity and specificity. It may be used as a complement to existing guidelines to identify patients who could avoid unnecessary surgical resection. The Korean Association of Hepato-Biliary-Pancreatic Surgery 2023-05-31 2023-04-03 /pmc/articles/PMC10201055/ /pubmed/37006188 http://dx.doi.org/10.14701/ahbps.22-107 Text en Copyright © 2023 by The Korean Association of Hepato-Biliary-Pancreatic Surgery https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0 (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Hernandez-Barco, Yasmin Genevieve Daye, Dania Fernandez-del Castillo, Carlos F. Parker, Regina F. Casey, Brenna W. Warshaw, Andrew L. Ferrone, Cristina R. Lillemoe, Keith D. Qadan, Motaz IPMN-LEARN: A linear support vector machine learning model for predicting low-grade intraductal papillary mucinous neoplasms |
title | IPMN-LEARN: A linear support vector machine learning model for predicting low-grade intraductal papillary mucinous neoplasms |
title_full | IPMN-LEARN: A linear support vector machine learning model for predicting low-grade intraductal papillary mucinous neoplasms |
title_fullStr | IPMN-LEARN: A linear support vector machine learning model for predicting low-grade intraductal papillary mucinous neoplasms |
title_full_unstemmed | IPMN-LEARN: A linear support vector machine learning model for predicting low-grade intraductal papillary mucinous neoplasms |
title_short | IPMN-LEARN: A linear support vector machine learning model for predicting low-grade intraductal papillary mucinous neoplasms |
title_sort | ipmn-learn: a linear support vector machine learning model for predicting low-grade intraductal papillary mucinous neoplasms |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201055/ https://www.ncbi.nlm.nih.gov/pubmed/37006188 http://dx.doi.org/10.14701/ahbps.22-107 |
work_keys_str_mv | AT hernandezbarcoyasmingenevieve ipmnlearnalinearsupportvectormachinelearningmodelforpredictinglowgradeintraductalpapillarymucinousneoplasms AT dayedania ipmnlearnalinearsupportvectormachinelearningmodelforpredictinglowgradeintraductalpapillarymucinousneoplasms AT fernandezdelcastillocarlosf ipmnlearnalinearsupportvectormachinelearningmodelforpredictinglowgradeintraductalpapillarymucinousneoplasms AT parkerreginaf ipmnlearnalinearsupportvectormachinelearningmodelforpredictinglowgradeintraductalpapillarymucinousneoplasms AT caseybrennaw ipmnlearnalinearsupportvectormachinelearningmodelforpredictinglowgradeintraductalpapillarymucinousneoplasms AT warshawandrewl ipmnlearnalinearsupportvectormachinelearningmodelforpredictinglowgradeintraductalpapillarymucinousneoplasms AT ferronecristinar ipmnlearnalinearsupportvectormachinelearningmodelforpredictinglowgradeintraductalpapillarymucinousneoplasms AT lillemoekeithd ipmnlearnalinearsupportvectormachinelearningmodelforpredictinglowgradeintraductalpapillarymucinousneoplasms AT qadanmotaz ipmnlearnalinearsupportvectormachinelearningmodelforpredictinglowgradeintraductalpapillarymucinousneoplasms |