Cargando…
Mechanical improvement of boron nitride nanosheet-reinforced cement paste by multiscale modeling
Representative volume (RVE) models are constructed to mimic the microstructural characteristics of boron nitride nanosheet (BNNS)-reinforced cement paste. The interfacial properties between BNNSs and cement paste are described by the cohesive zone model (CZM) developed by molecular dynamics (MD) sim...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201299/ https://www.ncbi.nlm.nih.gov/pubmed/37223269 http://dx.doi.org/10.1016/j.patter.2023.100724 |
_version_ | 1785045237303869440 |
---|---|
author | Liu, Jialin Liu, Weihe Chow, Cheuk Lun Lau, Denvid |
author_facet | Liu, Jialin Liu, Weihe Chow, Cheuk Lun Lau, Denvid |
author_sort | Liu, Jialin |
collection | PubMed |
description | Representative volume (RVE) models are constructed to mimic the microstructural characteristics of boron nitride nanosheet (BNNS)-reinforced cement paste. The interfacial properties between BNNSs and cement paste are described by the cohesive zone model (CZM) developed by molecular dynamics (MD) simulations. Based on the RVE models and the MD-based CZM, the mechanical properties of the macroscale cement paste are obtained by finite element analysis (FEA). To validate the accuracy of the MD-based CZM, the tensile strength and compressive strength of BNNS-reinforced cement paste from the FEA are compared with those from measurements. The FEA shows that the compressive strength of BNNS-reinforced cement paste is close to that of the measurements. The discrepancy of the tensile strength of BNNS-reinforced cement paste between the FEA and the measurements is distributed to the load transfer at the BNNS-tobermorite interface through the inclined BNNSs. |
format | Online Article Text |
id | pubmed-10201299 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-102012992023-05-23 Mechanical improvement of boron nitride nanosheet-reinforced cement paste by multiscale modeling Liu, Jialin Liu, Weihe Chow, Cheuk Lun Lau, Denvid Patterns (N Y) Article Representative volume (RVE) models are constructed to mimic the microstructural characteristics of boron nitride nanosheet (BNNS)-reinforced cement paste. The interfacial properties between BNNSs and cement paste are described by the cohesive zone model (CZM) developed by molecular dynamics (MD) simulations. Based on the RVE models and the MD-based CZM, the mechanical properties of the macroscale cement paste are obtained by finite element analysis (FEA). To validate the accuracy of the MD-based CZM, the tensile strength and compressive strength of BNNS-reinforced cement paste from the FEA are compared with those from measurements. The FEA shows that the compressive strength of BNNS-reinforced cement paste is close to that of the measurements. The discrepancy of the tensile strength of BNNS-reinforced cement paste between the FEA and the measurements is distributed to the load transfer at the BNNS-tobermorite interface through the inclined BNNSs. Elsevier 2023-04-07 /pmc/articles/PMC10201299/ /pubmed/37223269 http://dx.doi.org/10.1016/j.patter.2023.100724 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Liu, Jialin Liu, Weihe Chow, Cheuk Lun Lau, Denvid Mechanical improvement of boron nitride nanosheet-reinforced cement paste by multiscale modeling |
title | Mechanical improvement of boron nitride nanosheet-reinforced cement paste by multiscale modeling |
title_full | Mechanical improvement of boron nitride nanosheet-reinforced cement paste by multiscale modeling |
title_fullStr | Mechanical improvement of boron nitride nanosheet-reinforced cement paste by multiscale modeling |
title_full_unstemmed | Mechanical improvement of boron nitride nanosheet-reinforced cement paste by multiscale modeling |
title_short | Mechanical improvement of boron nitride nanosheet-reinforced cement paste by multiscale modeling |
title_sort | mechanical improvement of boron nitride nanosheet-reinforced cement paste by multiscale modeling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201299/ https://www.ncbi.nlm.nih.gov/pubmed/37223269 http://dx.doi.org/10.1016/j.patter.2023.100724 |
work_keys_str_mv | AT liujialin mechanicalimprovementofboronnitridenanosheetreinforcedcementpastebymultiscalemodeling AT liuweihe mechanicalimprovementofboronnitridenanosheetreinforcedcementpastebymultiscalemodeling AT chowcheuklun mechanicalimprovementofboronnitridenanosheetreinforcedcementpastebymultiscalemodeling AT laudenvid mechanicalimprovementofboronnitridenanosheetreinforcedcementpastebymultiscalemodeling |