Cargando…

Facile formation of barium titanium oxyhydride on a titanium hydride surface as an ammonia synthesis catalyst

Oxyhydrides are promising compounds as supports for ammonia synthesis catalysts because they suppress hydrogen poisoning on the catalyst surface and enhance the ammonia synthesis activity. Herein, we developed a facile method for preparing BaTiO(2.5)H(0.5), a perovskite oxyhydride, on a TiH(2) surfa...

Descripción completa

Detalles Bibliográficos
Autores principales: Goto, Yoshihiro, Kikugawa, Masashi, Kobayashi, Keisuke, Manaka, Yuichi, Nanba, Tetsuya, Matsumoto, Hideyuki, Matsumoto, Mitsuru, Aoki, Masakazu, Imagawa, Haruo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201397/
https://www.ncbi.nlm.nih.gov/pubmed/37223413
http://dx.doi.org/10.1039/d3ra01539d
_version_ 1785045256304066560
author Goto, Yoshihiro
Kikugawa, Masashi
Kobayashi, Keisuke
Manaka, Yuichi
Nanba, Tetsuya
Matsumoto, Hideyuki
Matsumoto, Mitsuru
Aoki, Masakazu
Imagawa, Haruo
author_facet Goto, Yoshihiro
Kikugawa, Masashi
Kobayashi, Keisuke
Manaka, Yuichi
Nanba, Tetsuya
Matsumoto, Hideyuki
Matsumoto, Mitsuru
Aoki, Masakazu
Imagawa, Haruo
author_sort Goto, Yoshihiro
collection PubMed
description Oxyhydrides are promising compounds as supports for ammonia synthesis catalysts because they suppress hydrogen poisoning on the catalyst surface and enhance the ammonia synthesis activity. Herein, we developed a facile method for preparing BaTiO(2.5)H(0.5), a perovskite oxyhydride, on a TiH(2) surface via the conventional wet impregnation method using TiH(2) and Ba hydroxide. Scanning electron microscopy and high-angle annular dark-field scanning transmission electron microscopy observations revealed that BaTiO(2.5)H(0.5) crystallized as nanoparticles of ca. 100–200 nm on the TiH(2) surface. The Ru-loaded catalyst Ru/BaTiO(2.5)H(0.5)-TiH(2) exhibited 2.46 times higher ammonia synthesis activity (3.05 mmol-NH(3) g(−1) h(−1) at 400 °C) than the benchmark Ru catalyst Ru–Cs/MgO (1.24 mmol-NH(3) g(−1) h(−1) at 400 °C) because of the suppression of hydrogen poisoning. The analysis of reaction orders showed that the effect of suppressing hydrogen poisoning on Ru/BaTiO(2.5)H(0.5)-TiH(2) was equivalent to that of the reported Ru/BaTiO(2.5)H(0.5) catalyst, thus supporting the formation of BaTiO(2.5)H(0.5) perovskite oxyhydride. This study demonstrated that the selection of appropriate raw materials facilitates the formation of BaTiO(2.5)H(0.5) oxyhydride nanoparticles on the TiH(2) surface using the conventional synthesis method.
format Online
Article
Text
id pubmed-10201397
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-102013972023-05-23 Facile formation of barium titanium oxyhydride on a titanium hydride surface as an ammonia synthesis catalyst Goto, Yoshihiro Kikugawa, Masashi Kobayashi, Keisuke Manaka, Yuichi Nanba, Tetsuya Matsumoto, Hideyuki Matsumoto, Mitsuru Aoki, Masakazu Imagawa, Haruo RSC Adv Chemistry Oxyhydrides are promising compounds as supports for ammonia synthesis catalysts because they suppress hydrogen poisoning on the catalyst surface and enhance the ammonia synthesis activity. Herein, we developed a facile method for preparing BaTiO(2.5)H(0.5), a perovskite oxyhydride, on a TiH(2) surface via the conventional wet impregnation method using TiH(2) and Ba hydroxide. Scanning electron microscopy and high-angle annular dark-field scanning transmission electron microscopy observations revealed that BaTiO(2.5)H(0.5) crystallized as nanoparticles of ca. 100–200 nm on the TiH(2) surface. The Ru-loaded catalyst Ru/BaTiO(2.5)H(0.5)-TiH(2) exhibited 2.46 times higher ammonia synthesis activity (3.05 mmol-NH(3) g(−1) h(−1) at 400 °C) than the benchmark Ru catalyst Ru–Cs/MgO (1.24 mmol-NH(3) g(−1) h(−1) at 400 °C) because of the suppression of hydrogen poisoning. The analysis of reaction orders showed that the effect of suppressing hydrogen poisoning on Ru/BaTiO(2.5)H(0.5)-TiH(2) was equivalent to that of the reported Ru/BaTiO(2.5)H(0.5) catalyst, thus supporting the formation of BaTiO(2.5)H(0.5) perovskite oxyhydride. This study demonstrated that the selection of appropriate raw materials facilitates the formation of BaTiO(2.5)H(0.5) oxyhydride nanoparticles on the TiH(2) surface using the conventional synthesis method. The Royal Society of Chemistry 2023-05-22 /pmc/articles/PMC10201397/ /pubmed/37223413 http://dx.doi.org/10.1039/d3ra01539d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Goto, Yoshihiro
Kikugawa, Masashi
Kobayashi, Keisuke
Manaka, Yuichi
Nanba, Tetsuya
Matsumoto, Hideyuki
Matsumoto, Mitsuru
Aoki, Masakazu
Imagawa, Haruo
Facile formation of barium titanium oxyhydride on a titanium hydride surface as an ammonia synthesis catalyst
title Facile formation of barium titanium oxyhydride on a titanium hydride surface as an ammonia synthesis catalyst
title_full Facile formation of barium titanium oxyhydride on a titanium hydride surface as an ammonia synthesis catalyst
title_fullStr Facile formation of barium titanium oxyhydride on a titanium hydride surface as an ammonia synthesis catalyst
title_full_unstemmed Facile formation of barium titanium oxyhydride on a titanium hydride surface as an ammonia synthesis catalyst
title_short Facile formation of barium titanium oxyhydride on a titanium hydride surface as an ammonia synthesis catalyst
title_sort facile formation of barium titanium oxyhydride on a titanium hydride surface as an ammonia synthesis catalyst
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201397/
https://www.ncbi.nlm.nih.gov/pubmed/37223413
http://dx.doi.org/10.1039/d3ra01539d
work_keys_str_mv AT gotoyoshihiro facileformationofbariumtitaniumoxyhydrideonatitaniumhydridesurfaceasanammoniasynthesiscatalyst
AT kikugawamasashi facileformationofbariumtitaniumoxyhydrideonatitaniumhydridesurfaceasanammoniasynthesiscatalyst
AT kobayashikeisuke facileformationofbariumtitaniumoxyhydrideonatitaniumhydridesurfaceasanammoniasynthesiscatalyst
AT manakayuichi facileformationofbariumtitaniumoxyhydrideonatitaniumhydridesurfaceasanammoniasynthesiscatalyst
AT nanbatetsuya facileformationofbariumtitaniumoxyhydrideonatitaniumhydridesurfaceasanammoniasynthesiscatalyst
AT matsumotohideyuki facileformationofbariumtitaniumoxyhydrideonatitaniumhydridesurfaceasanammoniasynthesiscatalyst
AT matsumotomitsuru facileformationofbariumtitaniumoxyhydrideonatitaniumhydridesurfaceasanammoniasynthesiscatalyst
AT aokimasakazu facileformationofbariumtitaniumoxyhydrideonatitaniumhydridesurfaceasanammoniasynthesiscatalyst
AT imagawaharuo facileformationofbariumtitaniumoxyhydrideonatitaniumhydridesurfaceasanammoniasynthesiscatalyst