Cargando…
GARCHNet: Value-at-Risk Forecasting with GARCH Models Based on Neural Networks
This paper proposes a new GARCH specification that adapts the architecture of a long-term short memory neural network (LSTM). It is shown that classical GARCH models generally give good results in financial modeling, where high volatility can be observed. In particular, their high value is often pra...
Autores principales: | Buczynski, Mateusz, Chlebus, Marcin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201522/ https://www.ncbi.nlm.nih.gov/pubmed/37362594 http://dx.doi.org/10.1007/s10614-023-10390-7 |
Ejemplares similares
-
Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns
por: Bildirici, Melike, et al.
Publicado: (2014) -
Traffic Volatility Forecasting Using an Omnibus Family GARCH Modeling Framework
por: Ou, Jishun, et al.
Publicado: (2022) -
GARCH Models
por: Francq, Christian
Publicado: (2010) -
GARCH Models
por: Francq, Christian
Publicado: (2019) -
A network autoregressive model with GARCH effects and its applications
por: Huang, Shih-Feng, et al.
Publicado: (2021)