Cargando…

An Evaluation of Maximum Determination Methods for Center Line Slope Analysis

[Image: see text] Ultrafast molecular dynamics are frequently extracted from two-dimensional (2D) spectra via the center line slope (CLS) method. The CLS method depends on the accurate determination of frequencies where the 2D signal is at a maximum, and multiple approaches exist for the determinati...

Descripción completa

Detalles Bibliográficos
Autores principales: Valentine, Mason L., Wiesehan, Garret D., Xiong, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201534/
https://www.ncbi.nlm.nih.gov/pubmed/37159840
http://dx.doi.org/10.1021/acs.jpcb.2c07565
Descripción
Sumario:[Image: see text] Ultrafast molecular dynamics are frequently extracted from two-dimensional (2D) spectra via the center line slope (CLS) method. The CLS method depends on the accurate determination of frequencies where the 2D signal is at a maximum, and multiple approaches exist for the determination of that maximum. Various versions of peak fitting for CLS analyses have been utilized; however, the impact of peak fitting on the accuracy and precision of the CLS method has not been reported in detail. Here, we evaluate several versions of CLS analyses using both simulated and experimental 2D spectra. The CLS method was found to be significantly more robust when fits were used to extract the maxima, particularly fitting methods that utilize pairs of opposite-sign peaks. However, we also observed that pairs of opposite-signed peaks required more assumptions than single peaks, which are important to check when interpreting experimental spectra using peak pairs.