Cargando…
Frameworks for estimating causal effects in observational settings: comparing confounder adjustment and instrumental variables
To estimate causal effects, analysts performing observational studies in health settings utilize several strategies to mitigate bias due to confounding by indication. There are two broad classes of approaches for these purposes: use of confounders and instrumental variables (IVs). Because such appro...
Autores principales: | Zawadzki, Roy S., Grill, Joshua D., Gillen, Daniel L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201752/ https://www.ncbi.nlm.nih.gov/pubmed/37217854 http://dx.doi.org/10.1186/s12874-023-01936-2 |
Ejemplares similares
-
Causal effect estimation in sequencing studies: a Bayesian method to account for confounder adjustment uncertainty
por: Wang, Chi, et al.
Publicado: (2016) -
Optimal adjustment sets for causal query estimation in partially observed biomolecular networks
por: Mohammad-Taheri, Sara, et al.
Publicado: (2023) -
Confounding Effects of Phase Delays on Causality Estimation
por: Vakorin, Vasily A., et al.
Publicado: (2013) -
A comparison of confounder selection and adjustment methods for estimating causal effects using large healthcare databases
por: Benasseur, Imane, et al.
Publicado: (2022) -
A general framework for powerful confounder adjustment in omics association studies
por: Roy, Asmita, et al.
Publicado: (2023)