Cargando…

Noninvasive prediction of node-positive breast cancer response to presurgical neoadjuvant chemotherapy therapy based on machine learning of axillary lymph node ultrasound

OBJECTIVES: To explore an optimal model to predict the response of patients with axillary lymph node (ALN) positive breast cancer to neoadjuvant chemotherapy (NAC) with machine learning using clinical and ultrasound-based radiomic features. METHODS: In this study, 1014 patients with ALN-positive bre...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Hao, Cao, Wen, Liu, Lianjuan, Meng, Zifan, Sun, Ningning, Meng, Yuanyuan, Fei, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201761/
https://www.ncbi.nlm.nih.gov/pubmed/37211604
http://dx.doi.org/10.1186/s12967-023-04201-8
Descripción
Sumario:OBJECTIVES: To explore an optimal model to predict the response of patients with axillary lymph node (ALN) positive breast cancer to neoadjuvant chemotherapy (NAC) with machine learning using clinical and ultrasound-based radiomic features. METHODS: In this study, 1014 patients with ALN-positive breast cancer confirmed by histological examination and received preoperative NAC in the Affiliated Hospital of Qingdao University (QUH) and Qingdao Municipal Hospital (QMH) were included. Finally, 444 participants from QUH were divided into the training cohort (n = 310) and validation cohort (n = 134) based on the date of ultrasound examination. 81 participants from QMH were used to evaluate the external generalizability of our prediction models. A total of 1032 radiomic features of each ALN ultrasound image were extracted and used to establish the prediction models. The clinical model, radiomics model, and radiomics nomogram with clinical factors (RNWCF) were built. The performance of the models was assessed with respect to discrimination and clinical usefulness. RESULTS: Although the radiomics model did not show better predictive efficacy than the clinical model, the RNWCF showed favorable predictive efficacy in the training cohort (AUC, 0.855; 95% CI 0.817–0.893), the validation cohort (AUC, 0.882; 95% CI 0.834–0.928), and the external test cohort (AUC, 0.858; 95% CI 0.782–0.921) compared with the clinical factor model and radiomics model. CONCLUSIONS: The RNWCF, a noninvasive, preoperative prediction tool that incorporates a combination of clinical and radiomics features, showed favorable predictive efficacy for the response of node-positive breast cancer to NAC. Therefore, the RNWCF could serve as a potential noninvasive approach to assist personalized treatment strategies, guide ALN management, avoiding unnecessary ALND. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-023-04201-8.