Cargando…
Models and Mechanisms for Spatial Data Fairness
Fairness in data-driven decision-making studies scenarios where individuals from certain population segments may be unfairly treated when being considered for loan or job applications, access to public resources, or other types of services. In location-based applications, decisions are based on indi...
Autores principales: | Shaham, Sina, Ghinita, Gabriel, Shahabi, Cyrus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201928/ https://www.ncbi.nlm.nih.gov/pubmed/37220471 http://dx.doi.org/10.14778/3565816.3565820 |
Ejemplares similares
-
A secure location-based alert system with tunable privacy-performance trade-off
por: Ghinita, Gabriel, et al.
Publicado: (2020) -
FiSH: fair spatial hot spots
por: P., Deepak, et al.
Publicado: (2022) -
Be FAIR to your data
por: Solle, Dörte
Publicado: (2020) -
Quantification of fairness bias by a Fairness-Equity Model
por: Tam, David Nicoladie
Publicado: (2011) -
There's Something about a Fair Split: Intentionality Moderates Context-Based Fairness Considerations in Social Decision-Making
por: Radke, Sina, et al.
Publicado: (2012)