Cargando…
Variance Measures for Symmetric Positive (Semi-) Definite Tensors in Two Dimensions
Calculating the variance of a family of tensors, each represented by a symmetric positive semi-definite second order tensor/matrix, involves the formation of a fourth order tensor R(abcd). To form this tensor, the tensor product of each second order tensor with itself is formed, and these products a...
Autores principales: | Herberthson, Magnus, Özarslan, Evren, Westin, Carl-Fredrik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201932/ https://www.ncbi.nlm.nih.gov/pubmed/37220520 http://dx.doi.org/10.1007/978-3-030-56215-1_1 |
Ejemplares similares
-
Q- space trajectory imaging with positivity constraints (QTI+)
por: Herberthson, Magnus, et al.
Publicado: (2021) -
Orientationally-averaged diffusion-attenuated magnetic resonance signal for locally-anisotropic diffusion
por: Herberthson, Magnus, et al.
Publicado: (2019) -
Gradient waveform design for tensor-valued encoding in diffusion MRI
por: Szczepankiewicz, Filip, et al.
Publicado: (2020) -
Remarks on symmetrical tensor fields
por: Bodor, A, et al.
Publicado: (1995) -
mbend: an R package for bending non-positive-definite symmetric matrices to positive-definite
por: Nilforooshan, Mohammad Ali
Publicado: (2020)