Cargando…
Machine learning algorithm to predict the in-hospital mortality in critically ill patients with chronic kidney disease
BACKGROUND: This study aimed to establish and validate a machine learning (ML) model for predicting in-hospital mortality in critically ill patients with chronic kidney disease (CKD). METHODS: This study collected data on CKD patients from 2008 to 2019 using the Medical Information Mart for Intensiv...
Autores principales: | Li, Xunliang, Zhu, Yuyu, Zhao, Wenman, Shi, Rui, Wang, Zhijuan, Pan, Haifeng, Wang, Deguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201999/ https://www.ncbi.nlm.nih.gov/pubmed/37203863 http://dx.doi.org/10.1080/0886022X.2023.2212790 |
Ejemplares similares
-
Machine learning algorithm to predict mortality in critically ill patients with sepsis-associated acute kidney injury
por: Li, Xunliang, et al.
Publicado: (2023) -
Development and validation of a nomogram for predicting gram-negative bacterial infections in patients with peritoneal dialysis-associated peritonitis
por: Liu, Guiling, et al.
Publicado: (2023) -
The Causal Effect of Obesity on the Risk of 15 Autoimmune Diseases: A Mendelian Randomization Study
por: Li, Xunliang, et al.
Publicado: (2023) -
Using machine learning algorithms to predict 28-day mortality in critically ill elderly patients with colorectal cancer
por: Guo, Chunxia, et al.
Publicado: (2023) -
Association between fibrinogen/albumin ratio and severity of coronary artery calcification in patients with chronic kidney disease: a retrospective study
por: Zhu, Yuyu, et al.
Publicado: (2022)