Cargando…
PM2.5 concentration prediction using weighted CEEMDAN and improved LSTM neural network
As the core of pollution prevention and management, accurate PM2.5 concentration prediction is crucial for human survival. However, due to the nonstationarity and nonlinearity of PM2.5 concentration data, the accurate prediction for PM2.5 concentration remains a challenge. In this study, a PM2.5 con...
Autores principales: | Zhang, Li, Liu, Jinlan, Feng, Yuhan, Wu, Peng, He, Pengkun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202073/ https://www.ncbi.nlm.nih.gov/pubmed/37213020 http://dx.doi.org/10.1007/s11356-023-27630-w |
Ejemplares similares
-
Prediction of PM(2.5) concentration based on the CEEMDAN-RLMD-BiLSTM-LEC model
por: Guo, Qiao, et al.
Publicado: (2023) -
Gas Concentration Prediction Based on IWOA-LSTM-CEEMDAN Residual Correction Model
por: Xu, Ningke, et al.
Publicado: (2022) -
Research on PM2.5 Spatiotemporal Forecasting Model Based on LSTM Neural Network
por: Zhao, Fang, et al.
Publicado: (2021) -
Temperature Prediction of Seasonal Frozen Subgrades Based on CEEMDAN-LSTM Hybrid Model
por: Chen, Liyue, et al.
Publicado: (2022) -
Prediction of sea ice area based on the CEEMDAN-SO-BiLSTM model
por: Guo, Qiao, et al.
Publicado: (2023)