Cargando…
Switchable Kirigami Structures as Window Envelopes for Energy-Efficient Buildings
Efficient regulation of thermal radiation is an effective way to conserve energy consumption of buildings. Because windows are the least energy-efficient part of buildings, their thermal radiation regulation is highly demanded, especially in the changing environment, but is still a challenge. Here,...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202178/ https://www.ncbi.nlm.nih.gov/pubmed/37223463 http://dx.doi.org/10.34133/research.0103 |
Sumario: | Efficient regulation of thermal radiation is an effective way to conserve energy consumption of buildings. Because windows are the least energy-efficient part of buildings, their thermal radiation regulation is highly demanded, especially in the changing environment, but is still a challenge. Here, by employing a kirigami structure, we design a variable-angle thermal reflector as a transparent envelope of windows for their thermal radiation modulation. The envelope can be easily switched between heating and cooling modes by loading different pre-stresses, which endow the envelope windows with the ability of temperature regulation, and the interior temperature of a building model can be reduced by ~3.3 °C under cooling mode and increased by ~3.9 °C under heating mode in the outdoor test. The improved thermal management of windows by the adaptive envelope provides an extra heating, ventilation, and air-conditioning energy savings percentage of 13% to 29% per year for buildings located in different climate zones around the world, making the kirigami envelope windows a promising way for energy-saving utilization. |
---|