Cargando…
Informative and adaptive distances and summary statistics in sequential approximate Bayesian computation
Calibrating model parameters on heterogeneous data can be challenging and inefficient. This holds especially for likelihood-free methods such as approximate Bayesian computation (ABC), which rely on the comparison of relevant features in simulated and observed data and are popular for otherwise intr...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202307/ https://www.ncbi.nlm.nih.gov/pubmed/37216372 http://dx.doi.org/10.1371/journal.pone.0285836 |
_version_ | 1785045414806814720 |
---|---|
author | Schälte, Yannik Hasenauer, Jan |
author_facet | Schälte, Yannik Hasenauer, Jan |
author_sort | Schälte, Yannik |
collection | PubMed |
description | Calibrating model parameters on heterogeneous data can be challenging and inefficient. This holds especially for likelihood-free methods such as approximate Bayesian computation (ABC), which rely on the comparison of relevant features in simulated and observed data and are popular for otherwise intractable problems. To address this problem, methods have been developed to scale-normalize data, and to derive informative low-dimensional summary statistics using inverse regression models of parameters on data. However, while approaches only correcting for scale can be inefficient on partly uninformative data, the use of summary statistics can lead to information loss and relies on the accuracy of employed methods. In this work, we first show that the combination of adaptive scale normalization with regression-based summary statistics is advantageous on heterogeneous parameter scales. Second, we present an approach employing regression models not to transform data, but to inform sensitivity weights quantifying data informativeness. Third, we discuss problems for regression models under non-identifiability, and present a solution using target augmentation. We demonstrate improved accuracy and efficiency of the presented approach on various problems, in particular robustness and wide applicability of the sensitivity weights. Our findings demonstrate the potential of the adaptive approach. The developed algorithms have been made available in the open-source Python toolbox pyABC. |
format | Online Article Text |
id | pubmed-10202307 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-102023072023-05-23 Informative and adaptive distances and summary statistics in sequential approximate Bayesian computation Schälte, Yannik Hasenauer, Jan PLoS One Research Article Calibrating model parameters on heterogeneous data can be challenging and inefficient. This holds especially for likelihood-free methods such as approximate Bayesian computation (ABC), which rely on the comparison of relevant features in simulated and observed data and are popular for otherwise intractable problems. To address this problem, methods have been developed to scale-normalize data, and to derive informative low-dimensional summary statistics using inverse regression models of parameters on data. However, while approaches only correcting for scale can be inefficient on partly uninformative data, the use of summary statistics can lead to information loss and relies on the accuracy of employed methods. In this work, we first show that the combination of adaptive scale normalization with regression-based summary statistics is advantageous on heterogeneous parameter scales. Second, we present an approach employing regression models not to transform data, but to inform sensitivity weights quantifying data informativeness. Third, we discuss problems for regression models under non-identifiability, and present a solution using target augmentation. We demonstrate improved accuracy and efficiency of the presented approach on various problems, in particular robustness and wide applicability of the sensitivity weights. Our findings demonstrate the potential of the adaptive approach. The developed algorithms have been made available in the open-source Python toolbox pyABC. Public Library of Science 2023-05-22 /pmc/articles/PMC10202307/ /pubmed/37216372 http://dx.doi.org/10.1371/journal.pone.0285836 Text en © 2023 Schälte, Hasenauer https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Schälte, Yannik Hasenauer, Jan Informative and adaptive distances and summary statistics in sequential approximate Bayesian computation |
title | Informative and adaptive distances and summary statistics in sequential approximate Bayesian computation |
title_full | Informative and adaptive distances and summary statistics in sequential approximate Bayesian computation |
title_fullStr | Informative and adaptive distances and summary statistics in sequential approximate Bayesian computation |
title_full_unstemmed | Informative and adaptive distances and summary statistics in sequential approximate Bayesian computation |
title_short | Informative and adaptive distances and summary statistics in sequential approximate Bayesian computation |
title_sort | informative and adaptive distances and summary statistics in sequential approximate bayesian computation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202307/ https://www.ncbi.nlm.nih.gov/pubmed/37216372 http://dx.doi.org/10.1371/journal.pone.0285836 |
work_keys_str_mv | AT schalteyannik informativeandadaptivedistancesandsummarystatisticsinsequentialapproximatebayesiancomputation AT hasenauerjan informativeandadaptivedistancesandsummarystatisticsinsequentialapproximatebayesiancomputation |