Cargando…
Informative and adaptive distances and summary statistics in sequential approximate Bayesian computation
Calibrating model parameters on heterogeneous data can be challenging and inefficient. This holds especially for likelihood-free methods such as approximate Bayesian computation (ABC), which rely on the comparison of relevant features in simulated and observed data and are popular for otherwise intr...
Autores principales: | Schälte, Yannik, Hasenauer, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202307/ https://www.ncbi.nlm.nih.gov/pubmed/37216372 http://dx.doi.org/10.1371/journal.pone.0285836 |
Ejemplares similares
-
Efficient exact inference for dynamical systems with noisy measurements using sequential approximate Bayesian computation
por: Schälte, Yannik, et al.
Publicado: (2020) -
An automatic adaptive method to combine summary statistics in approximate Bayesian computation
por: Harrison, Jonathan U., et al.
Publicado: (2020) -
Selecting Summary Statistics in Approximate Bayesian Computation for Calibrating Stochastic Models
por: Burr, Tom, et al.
Publicado: (2013) -
A Novel Approach for Choosing Summary Statistics in Approximate Bayesian Computation
por: Aeschbacher, Simon, et al.
Publicado: (2012) -
Personalized pathology test for Cardio-vascular disease: Approximate Bayesian computation with discriminative summary statistics learning
por: Dutta, Ritabrata, et al.
Publicado: (2022)