Cargando…
Solving the explainable AI conundrum by bridging clinicians’ needs and developers’ goals
Explainable artificial intelligence (XAI) has emerged as a promising solution for addressing the implementation challenges of AI/ML in healthcare. However, little is known about how developers and clinicians interpret XAI and what conflicting goals and requirements they may have. This paper presents...
Autores principales: | Bienefeld, Nadine, Boss, Jens Michael, Lüthy, Rahel, Brodbeck, Dominique, Azzati, Jan, Blaser, Mirco, Willms, Jan, Keller, Emanuela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202353/ https://www.ncbi.nlm.nih.gov/pubmed/37217779 http://dx.doi.org/10.1038/s41746-023-00837-4 |
Ejemplares similares
-
Solving the shape conundrum in $^{70}$Se
por: Orce, Nico, et al.
Publicado: (2013) -
Solving the shape conundrum in $^{70}$Se
por: Orce, Nico, et al.
Publicado: (2012) -
GDMT for heart failure and the clinician's conundrum
por: Samarendra, Padmaraj
Publicado: (2019) -
Human understandable thyroid ultrasound imaging AI report system — A bridge between AI and clinicians
por: Yao, Siqiong, et al.
Publicado: (2023) -
Incipient Cognition Solves the Spatial Reciprocity Conundrum of Cooperation
por: Vukov, Jeromos, et al.
Publicado: (2011)