Cargando…
Eubacterium rectale Improves the Efficacy of Anti-PD1 Immunotherapy in Melanoma via l-Serine-Mediated NK Cell Activation
Natural killer (NK) cells, as key immune cells, play essential roles in tumor cell immune escape and immunotherapy. Accumulating evidence has demonstrated that the gut microbiota community affects the efficacy of anti-PD1 immunotherapy and that remodeling the gut microbiota is a promising strategy t...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202379/ https://www.ncbi.nlm.nih.gov/pubmed/37223471 http://dx.doi.org/10.34133/research.0127 |
_version_ | 1785045430483025920 |
---|---|
author | Liu, Nian Chen, Lihui Yan, Mingjie Tao, Qian Wu, Jie Chen, Jing Chen, Xiang Zhang, Wei Peng, Cong |
author_facet | Liu, Nian Chen, Lihui Yan, Mingjie Tao, Qian Wu, Jie Chen, Jing Chen, Xiang Zhang, Wei Peng, Cong |
author_sort | Liu, Nian |
collection | PubMed |
description | Natural killer (NK) cells, as key immune cells, play essential roles in tumor cell immune escape and immunotherapy. Accumulating evidence has demonstrated that the gut microbiota community affects the efficacy of anti-PD1 immunotherapy and that remodeling the gut microbiota is a promising strategy to enhance anti-PD1 immunotherapy responsiveness in advanced melanoma patients; however, the details of the mechanism remain elusive. In this study, we found that Eubacterium rectale was significantly enriched in melanoma patients who responded to anti-PD1 immunotherapy and that a high E. rectale abundance was related to longer survival in melanoma patients. Furthermore, administration of E. rectale remarkably improved the efficacy of anti-PD1 therapy and increased the overall survival of tumor-bearing mice; moreover, application of E. rectale led to a significant accumulation of NK cells in the tumor microenvironment. Interestingly, conditioned medium isolated from an E. rectale culture system dramatically enhanced NK cell function. Gas chromatography–mass spectrometry/ultrahigh performance liquid chromatography–tandem mass spectrometry-based metabolomic analysis showed that l-serine production was significantly decreased in the E. rectale group; moreover, administration of an l-serine synthesis inhibitor dramatically increased NK cell activation, which enhanced anti-PD1 immunotherapy effects. Mechanistically, supplementation with l-serine or application of an l-serine synthesis inhibitor affected NK cell activation through Fos/Fosl. In summary, our findings reveal the role of bacteria-modulated serine metabolic signaling in NK cell activation and provide a novel therapeutic strategy to improve the efficacy of anti-PD1 immunotherapy in melanoma. |
format | Online Article Text |
id | pubmed-10202379 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | AAAS |
record_format | MEDLINE/PubMed |
spelling | pubmed-102023792023-05-23 Eubacterium rectale Improves the Efficacy of Anti-PD1 Immunotherapy in Melanoma via l-Serine-Mediated NK Cell Activation Liu, Nian Chen, Lihui Yan, Mingjie Tao, Qian Wu, Jie Chen, Jing Chen, Xiang Zhang, Wei Peng, Cong Research (Wash D C) Research Article Natural killer (NK) cells, as key immune cells, play essential roles in tumor cell immune escape and immunotherapy. Accumulating evidence has demonstrated that the gut microbiota community affects the efficacy of anti-PD1 immunotherapy and that remodeling the gut microbiota is a promising strategy to enhance anti-PD1 immunotherapy responsiveness in advanced melanoma patients; however, the details of the mechanism remain elusive. In this study, we found that Eubacterium rectale was significantly enriched in melanoma patients who responded to anti-PD1 immunotherapy and that a high E. rectale abundance was related to longer survival in melanoma patients. Furthermore, administration of E. rectale remarkably improved the efficacy of anti-PD1 therapy and increased the overall survival of tumor-bearing mice; moreover, application of E. rectale led to a significant accumulation of NK cells in the tumor microenvironment. Interestingly, conditioned medium isolated from an E. rectale culture system dramatically enhanced NK cell function. Gas chromatography–mass spectrometry/ultrahigh performance liquid chromatography–tandem mass spectrometry-based metabolomic analysis showed that l-serine production was significantly decreased in the E. rectale group; moreover, administration of an l-serine synthesis inhibitor dramatically increased NK cell activation, which enhanced anti-PD1 immunotherapy effects. Mechanistically, supplementation with l-serine or application of an l-serine synthesis inhibitor affected NK cell activation through Fos/Fosl. In summary, our findings reveal the role of bacteria-modulated serine metabolic signaling in NK cell activation and provide a novel therapeutic strategy to improve the efficacy of anti-PD1 immunotherapy in melanoma. AAAS 2023-04-28 /pmc/articles/PMC10202379/ /pubmed/37223471 http://dx.doi.org/10.34133/research.0127 Text en Copyright © 2023 Nian Liu et al. https://creativecommons.org/licenses/by/4.0/Exclusive licensee Science and Technology Review Publishing House. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Liu, Nian Chen, Lihui Yan, Mingjie Tao, Qian Wu, Jie Chen, Jing Chen, Xiang Zhang, Wei Peng, Cong Eubacterium rectale Improves the Efficacy of Anti-PD1 Immunotherapy in Melanoma via l-Serine-Mediated NK Cell Activation |
title | Eubacterium rectale Improves the Efficacy of Anti-PD1 Immunotherapy in Melanoma via l-Serine-Mediated NK Cell Activation |
title_full | Eubacterium rectale Improves the Efficacy of Anti-PD1 Immunotherapy in Melanoma via l-Serine-Mediated NK Cell Activation |
title_fullStr | Eubacterium rectale Improves the Efficacy of Anti-PD1 Immunotherapy in Melanoma via l-Serine-Mediated NK Cell Activation |
title_full_unstemmed | Eubacterium rectale Improves the Efficacy of Anti-PD1 Immunotherapy in Melanoma via l-Serine-Mediated NK Cell Activation |
title_short | Eubacterium rectale Improves the Efficacy of Anti-PD1 Immunotherapy in Melanoma via l-Serine-Mediated NK Cell Activation |
title_sort | eubacterium rectale improves the efficacy of anti-pd1 immunotherapy in melanoma via l-serine-mediated nk cell activation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202379/ https://www.ncbi.nlm.nih.gov/pubmed/37223471 http://dx.doi.org/10.34133/research.0127 |
work_keys_str_mv | AT liunian eubacteriumrectaleimprovestheefficacyofantipd1immunotherapyinmelanomavialserinemediatednkcellactivation AT chenlihui eubacteriumrectaleimprovestheefficacyofantipd1immunotherapyinmelanomavialserinemediatednkcellactivation AT yanmingjie eubacteriumrectaleimprovestheefficacyofantipd1immunotherapyinmelanomavialserinemediatednkcellactivation AT taoqian eubacteriumrectaleimprovestheefficacyofantipd1immunotherapyinmelanomavialserinemediatednkcellactivation AT wujie eubacteriumrectaleimprovestheefficacyofantipd1immunotherapyinmelanomavialserinemediatednkcellactivation AT chenjing eubacteriumrectaleimprovestheefficacyofantipd1immunotherapyinmelanomavialserinemediatednkcellactivation AT chenxiang eubacteriumrectaleimprovestheefficacyofantipd1immunotherapyinmelanomavialserinemediatednkcellactivation AT zhangwei eubacteriumrectaleimprovestheefficacyofantipd1immunotherapyinmelanomavialserinemediatednkcellactivation AT pengcong eubacteriumrectaleimprovestheefficacyofantipd1immunotherapyinmelanomavialserinemediatednkcellactivation |