Cargando…
APE1 recruits ATRIP to ssDNA in an RPA-dependent and -independent manner to promote the ATR DNA damage response
Cells have evolved the DNA damage response (DDR) pathways in response to DNA replication stress or DNA damage. In the ATR-Chk1 DDR pathway, it has been proposed that ATR is recruited to RPA-coated single-stranded DNA (ssDNA) by direct ATRIP-RPA interaction. However, it remains elusive how ATRIP is r...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202453/ https://www.ncbi.nlm.nih.gov/pubmed/37216274 http://dx.doi.org/10.7554/eLife.82324 |
_version_ | 1785045441347321856 |
---|---|
author | Lin, Yunfeng Li, Jia Zhao, Haichao McMahon, Anne McGhee, Kelly Yan, Shan |
author_facet | Lin, Yunfeng Li, Jia Zhao, Haichao McMahon, Anne McGhee, Kelly Yan, Shan |
author_sort | Lin, Yunfeng |
collection | PubMed |
description | Cells have evolved the DNA damage response (DDR) pathways in response to DNA replication stress or DNA damage. In the ATR-Chk1 DDR pathway, it has been proposed that ATR is recruited to RPA-coated single-stranded DNA (ssDNA) by direct ATRIP-RPA interaction. However, it remains elusive how ATRIP is recruited to ssDNA in an RPA-independent manner. Here, we provide evidence that APE1 directly associates ssDNA to recruit ATRIP onto ssDNA in an RPA-independent fashion. The N-terminal motif within APE1 is required and sufficient for the APE1-ATRIP interaction in vitro and the distinct APE1-ATRIP interaction is required for ATRIP recruitment to ssDNA and the ATR-Chk1 DDR pathway activation in Xenopus egg extracts. In addition, APE1 directly associates with RPA70 and RPA32 via two distinct motifs. Taken together, our evidence suggests that APE1 recruits ATRIP onto ssDNA in an RPA-dependent and -independent manner in the ATR DDR pathway. |
format | Online Article Text |
id | pubmed-10202453 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-102024532023-05-23 APE1 recruits ATRIP to ssDNA in an RPA-dependent and -independent manner to promote the ATR DNA damage response Lin, Yunfeng Li, Jia Zhao, Haichao McMahon, Anne McGhee, Kelly Yan, Shan eLife Biochemistry and Chemical Biology Cells have evolved the DNA damage response (DDR) pathways in response to DNA replication stress or DNA damage. In the ATR-Chk1 DDR pathway, it has been proposed that ATR is recruited to RPA-coated single-stranded DNA (ssDNA) by direct ATRIP-RPA interaction. However, it remains elusive how ATRIP is recruited to ssDNA in an RPA-independent manner. Here, we provide evidence that APE1 directly associates ssDNA to recruit ATRIP onto ssDNA in an RPA-independent fashion. The N-terminal motif within APE1 is required and sufficient for the APE1-ATRIP interaction in vitro and the distinct APE1-ATRIP interaction is required for ATRIP recruitment to ssDNA and the ATR-Chk1 DDR pathway activation in Xenopus egg extracts. In addition, APE1 directly associates with RPA70 and RPA32 via two distinct motifs. Taken together, our evidence suggests that APE1 recruits ATRIP onto ssDNA in an RPA-dependent and -independent manner in the ATR DDR pathway. eLife Sciences Publications, Ltd 2023-05-22 /pmc/articles/PMC10202453/ /pubmed/37216274 http://dx.doi.org/10.7554/eLife.82324 Text en © 2023, Lin et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Biochemistry and Chemical Biology Lin, Yunfeng Li, Jia Zhao, Haichao McMahon, Anne McGhee, Kelly Yan, Shan APE1 recruits ATRIP to ssDNA in an RPA-dependent and -independent manner to promote the ATR DNA damage response |
title | APE1 recruits ATRIP to ssDNA in an RPA-dependent and -independent manner to promote the ATR DNA damage response |
title_full | APE1 recruits ATRIP to ssDNA in an RPA-dependent and -independent manner to promote the ATR DNA damage response |
title_fullStr | APE1 recruits ATRIP to ssDNA in an RPA-dependent and -independent manner to promote the ATR DNA damage response |
title_full_unstemmed | APE1 recruits ATRIP to ssDNA in an RPA-dependent and -independent manner to promote the ATR DNA damage response |
title_short | APE1 recruits ATRIP to ssDNA in an RPA-dependent and -independent manner to promote the ATR DNA damage response |
title_sort | ape1 recruits atrip to ssdna in an rpa-dependent and -independent manner to promote the atr dna damage response |
topic | Biochemistry and Chemical Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202453/ https://www.ncbi.nlm.nih.gov/pubmed/37216274 http://dx.doi.org/10.7554/eLife.82324 |
work_keys_str_mv | AT linyunfeng ape1recruitsatriptossdnainanrpadependentandindependentmannertopromotetheatrdnadamageresponse AT lijia ape1recruitsatriptossdnainanrpadependentandindependentmannertopromotetheatrdnadamageresponse AT zhaohaichao ape1recruitsatriptossdnainanrpadependentandindependentmannertopromotetheatrdnadamageresponse AT mcmahonanne ape1recruitsatriptossdnainanrpadependentandindependentmannertopromotetheatrdnadamageresponse AT mcgheekelly ape1recruitsatriptossdnainanrpadependentandindependentmannertopromotetheatrdnadamageresponse AT yanshan ape1recruitsatriptossdnainanrpadependentandindependentmannertopromotetheatrdnadamageresponse |