Cargando…
Dynamics in Deep Classifiers Trained with the Square Loss: Normalization, Low Rank, Neural Collapse, and Generalization Bounds
We overview several properties—old and new—of training overparameterized deep networks under the square loss. We first consider a model of the dynamics of gradient flow under the square loss in deep homogeneous rectified linear unit networks. We study the convergence to a solution with the absolute...
Autores principales: | Xu, Mengjia, Rangamani, Akshay, Liao, Qianli, Galanti, Tomer, Poggio, Tomaso |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202460/ https://www.ncbi.nlm.nih.gov/pubmed/37223467 http://dx.doi.org/10.34133/research.0024 |
Ejemplares similares
-
Complexity control by gradient descent in deep networks
por: Poggio, Tomaso, et al.
Publicado: (2020) -
The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex
por: Leibo, Joel Z., et al.
Publicado: (2015) -
Invariant recognition drives neural representations of action sequences
por: Tacchetti, Andrea, et al.
Publicado: (2017) -
Classifying the absolute toral rank two case
por: Strade, Helmut
Publicado: (2017) -
Classifying the Absolute Toral Rank Two Case
por: Strade, Helmut
Publicado: (2009)