Cargando…
A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories
Pancreatic cancer is an aggressive disease that typically presents late with poor outcomes, indicating a pronounced need for early detection. In this study, we applied artificial intelligence methods to clinical data from 6 million patients (24,000 pancreatic cancer cases) in Denmark (Danish Nationa...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202814/ https://www.ncbi.nlm.nih.gov/pubmed/37156936 http://dx.doi.org/10.1038/s41591-023-02332-5 |
_version_ | 1785045500585574400 |
---|---|
author | Placido, Davide Yuan, Bo Hjaltelin, Jessica X. Zheng, Chunlei Haue, Amalie D. Chmura, Piotr J. Yuan, Chen Kim, Jihye Umeton, Renato Antell, Gregory Chowdhury, Alexander Franz, Alexandra Brais, Lauren Andrews, Elizabeth Marks, Debora S. Regev, Aviv Ayandeh, Siamack Brophy, Mary T. Do, Nhan V. Kraft, Peter Wolpin, Brian M. Rosenthal, Michael H. Fillmore, Nathanael R. Brunak, Søren Sander, Chris |
author_facet | Placido, Davide Yuan, Bo Hjaltelin, Jessica X. Zheng, Chunlei Haue, Amalie D. Chmura, Piotr J. Yuan, Chen Kim, Jihye Umeton, Renato Antell, Gregory Chowdhury, Alexander Franz, Alexandra Brais, Lauren Andrews, Elizabeth Marks, Debora S. Regev, Aviv Ayandeh, Siamack Brophy, Mary T. Do, Nhan V. Kraft, Peter Wolpin, Brian M. Rosenthal, Michael H. Fillmore, Nathanael R. Brunak, Søren Sander, Chris |
author_sort | Placido, Davide |
collection | PubMed |
description | Pancreatic cancer is an aggressive disease that typically presents late with poor outcomes, indicating a pronounced need for early detection. In this study, we applied artificial intelligence methods to clinical data from 6 million patients (24,000 pancreatic cancer cases) in Denmark (Danish National Patient Registry (DNPR)) and from 3 million patients (3,900 cases) in the United States (US Veterans Affairs (US-VA)). We trained machine learning models on the sequence of disease codes in clinical histories and tested prediction of cancer occurrence within incremental time windows (CancerRiskNet). For cancer occurrence within 36 months, the performance of the best DNPR model has area under the receiver operating characteristic (AUROC) curve = 0.88 and decreases to AUROC (3m) = 0.83 when disease events within 3 months before cancer diagnosis are excluded from training, with an estimated relative risk of 59 for 1,000 highest-risk patients older than age 50 years. Cross-application of the Danish model to US-VA data had lower performance (AUROC = 0.71), and retraining was needed to improve performance (AUROC = 0.78, AUROC (3m) = 0.76). These results improve the ability to design realistic surveillance programs for patients at elevated risk, potentially benefiting lifespan and quality of life by early detection of this aggressive cancer. |
format | Online Article Text |
id | pubmed-10202814 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-102028142023-05-24 A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories Placido, Davide Yuan, Bo Hjaltelin, Jessica X. Zheng, Chunlei Haue, Amalie D. Chmura, Piotr J. Yuan, Chen Kim, Jihye Umeton, Renato Antell, Gregory Chowdhury, Alexander Franz, Alexandra Brais, Lauren Andrews, Elizabeth Marks, Debora S. Regev, Aviv Ayandeh, Siamack Brophy, Mary T. Do, Nhan V. Kraft, Peter Wolpin, Brian M. Rosenthal, Michael H. Fillmore, Nathanael R. Brunak, Søren Sander, Chris Nat Med Article Pancreatic cancer is an aggressive disease that typically presents late with poor outcomes, indicating a pronounced need for early detection. In this study, we applied artificial intelligence methods to clinical data from 6 million patients (24,000 pancreatic cancer cases) in Denmark (Danish National Patient Registry (DNPR)) and from 3 million patients (3,900 cases) in the United States (US Veterans Affairs (US-VA)). We trained machine learning models on the sequence of disease codes in clinical histories and tested prediction of cancer occurrence within incremental time windows (CancerRiskNet). For cancer occurrence within 36 months, the performance of the best DNPR model has area under the receiver operating characteristic (AUROC) curve = 0.88 and decreases to AUROC (3m) = 0.83 when disease events within 3 months before cancer diagnosis are excluded from training, with an estimated relative risk of 59 for 1,000 highest-risk patients older than age 50 years. Cross-application of the Danish model to US-VA data had lower performance (AUROC = 0.71), and retraining was needed to improve performance (AUROC = 0.78, AUROC (3m) = 0.76). These results improve the ability to design realistic surveillance programs for patients at elevated risk, potentially benefiting lifespan and quality of life by early detection of this aggressive cancer. Nature Publishing Group US 2023-05-08 2023 /pmc/articles/PMC10202814/ /pubmed/37156936 http://dx.doi.org/10.1038/s41591-023-02332-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Placido, Davide Yuan, Bo Hjaltelin, Jessica X. Zheng, Chunlei Haue, Amalie D. Chmura, Piotr J. Yuan, Chen Kim, Jihye Umeton, Renato Antell, Gregory Chowdhury, Alexander Franz, Alexandra Brais, Lauren Andrews, Elizabeth Marks, Debora S. Regev, Aviv Ayandeh, Siamack Brophy, Mary T. Do, Nhan V. Kraft, Peter Wolpin, Brian M. Rosenthal, Michael H. Fillmore, Nathanael R. Brunak, Søren Sander, Chris A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories |
title | A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories |
title_full | A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories |
title_fullStr | A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories |
title_full_unstemmed | A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories |
title_short | A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories |
title_sort | deep learning algorithm to predict risk of pancreatic cancer from disease trajectories |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202814/ https://www.ncbi.nlm.nih.gov/pubmed/37156936 http://dx.doi.org/10.1038/s41591-023-02332-5 |
work_keys_str_mv | AT placidodavide adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT yuanbo adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT hjaltelinjessicax adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT zhengchunlei adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT haueamalied adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT chmurapiotrj adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT yuanchen adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT kimjihye adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT umetonrenato adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT antellgregory adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT chowdhuryalexander adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT franzalexandra adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT braislauren adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT andrewselizabeth adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT marksdeboras adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT regevaviv adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT ayandehsiamack adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT brophymaryt adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT donhanv adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT kraftpeter adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT wolpinbrianm adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT rosenthalmichaelh adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT fillmorenathanaelr adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT brunaksøren adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT sanderchris adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT placidodavide deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT yuanbo deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT hjaltelinjessicax deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT zhengchunlei deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT haueamalied deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT chmurapiotrj deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT yuanchen deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT kimjihye deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT umetonrenato deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT antellgregory deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT chowdhuryalexander deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT franzalexandra deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT braislauren deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT andrewselizabeth deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT marksdeboras deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT regevaviv deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT ayandehsiamack deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT brophymaryt deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT donhanv deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT kraftpeter deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT wolpinbrianm deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT rosenthalmichaelh deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT fillmorenathanaelr deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT brunaksøren deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories AT sanderchris deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories |