Cargando…

A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories

Pancreatic cancer is an aggressive disease that typically presents late with poor outcomes, indicating a pronounced need for early detection. In this study, we applied artificial intelligence methods to clinical data from 6 million patients (24,000 pancreatic cancer cases) in Denmark (Danish Nationa...

Descripción completa

Detalles Bibliográficos
Autores principales: Placido, Davide, Yuan, Bo, Hjaltelin, Jessica X., Zheng, Chunlei, Haue, Amalie D., Chmura, Piotr J., Yuan, Chen, Kim, Jihye, Umeton, Renato, Antell, Gregory, Chowdhury, Alexander, Franz, Alexandra, Brais, Lauren, Andrews, Elizabeth, Marks, Debora S., Regev, Aviv, Ayandeh, Siamack, Brophy, Mary T., Do, Nhan V., Kraft, Peter, Wolpin, Brian M., Rosenthal, Michael H., Fillmore, Nathanael R., Brunak, Søren, Sander, Chris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202814/
https://www.ncbi.nlm.nih.gov/pubmed/37156936
http://dx.doi.org/10.1038/s41591-023-02332-5
_version_ 1785045500585574400
author Placido, Davide
Yuan, Bo
Hjaltelin, Jessica X.
Zheng, Chunlei
Haue, Amalie D.
Chmura, Piotr J.
Yuan, Chen
Kim, Jihye
Umeton, Renato
Antell, Gregory
Chowdhury, Alexander
Franz, Alexandra
Brais, Lauren
Andrews, Elizabeth
Marks, Debora S.
Regev, Aviv
Ayandeh, Siamack
Brophy, Mary T.
Do, Nhan V.
Kraft, Peter
Wolpin, Brian M.
Rosenthal, Michael H.
Fillmore, Nathanael R.
Brunak, Søren
Sander, Chris
author_facet Placido, Davide
Yuan, Bo
Hjaltelin, Jessica X.
Zheng, Chunlei
Haue, Amalie D.
Chmura, Piotr J.
Yuan, Chen
Kim, Jihye
Umeton, Renato
Antell, Gregory
Chowdhury, Alexander
Franz, Alexandra
Brais, Lauren
Andrews, Elizabeth
Marks, Debora S.
Regev, Aviv
Ayandeh, Siamack
Brophy, Mary T.
Do, Nhan V.
Kraft, Peter
Wolpin, Brian M.
Rosenthal, Michael H.
Fillmore, Nathanael R.
Brunak, Søren
Sander, Chris
author_sort Placido, Davide
collection PubMed
description Pancreatic cancer is an aggressive disease that typically presents late with poor outcomes, indicating a pronounced need for early detection. In this study, we applied artificial intelligence methods to clinical data from 6 million patients (24,000 pancreatic cancer cases) in Denmark (Danish National Patient Registry (DNPR)) and from 3 million patients (3,900 cases) in the United States (US Veterans Affairs (US-VA)). We trained machine learning models on the sequence of disease codes in clinical histories and tested prediction of cancer occurrence within incremental time windows (CancerRiskNet). For cancer occurrence within 36 months, the performance of the best DNPR model has area under the receiver operating characteristic (AUROC) curve = 0.88 and decreases to AUROC (3m) = 0.83 when disease events within 3 months before cancer diagnosis are excluded from training, with an estimated relative risk of 59 for 1,000 highest-risk patients older than age 50 years. Cross-application of the Danish model to US-VA data had lower performance (AUROC = 0.71), and retraining was needed to improve performance (AUROC = 0.78, AUROC (3m) = 0.76). These results improve the ability to design realistic surveillance programs for patients at elevated risk, potentially benefiting lifespan and quality of life by early detection of this aggressive cancer.
format Online
Article
Text
id pubmed-10202814
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-102028142023-05-24 A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories Placido, Davide Yuan, Bo Hjaltelin, Jessica X. Zheng, Chunlei Haue, Amalie D. Chmura, Piotr J. Yuan, Chen Kim, Jihye Umeton, Renato Antell, Gregory Chowdhury, Alexander Franz, Alexandra Brais, Lauren Andrews, Elizabeth Marks, Debora S. Regev, Aviv Ayandeh, Siamack Brophy, Mary T. Do, Nhan V. Kraft, Peter Wolpin, Brian M. Rosenthal, Michael H. Fillmore, Nathanael R. Brunak, Søren Sander, Chris Nat Med Article Pancreatic cancer is an aggressive disease that typically presents late with poor outcomes, indicating a pronounced need for early detection. In this study, we applied artificial intelligence methods to clinical data from 6 million patients (24,000 pancreatic cancer cases) in Denmark (Danish National Patient Registry (DNPR)) and from 3 million patients (3,900 cases) in the United States (US Veterans Affairs (US-VA)). We trained machine learning models on the sequence of disease codes in clinical histories and tested prediction of cancer occurrence within incremental time windows (CancerRiskNet). For cancer occurrence within 36 months, the performance of the best DNPR model has area under the receiver operating characteristic (AUROC) curve = 0.88 and decreases to AUROC (3m) = 0.83 when disease events within 3 months before cancer diagnosis are excluded from training, with an estimated relative risk of 59 for 1,000 highest-risk patients older than age 50 years. Cross-application of the Danish model to US-VA data had lower performance (AUROC = 0.71), and retraining was needed to improve performance (AUROC = 0.78, AUROC (3m) = 0.76). These results improve the ability to design realistic surveillance programs for patients at elevated risk, potentially benefiting lifespan and quality of life by early detection of this aggressive cancer. Nature Publishing Group US 2023-05-08 2023 /pmc/articles/PMC10202814/ /pubmed/37156936 http://dx.doi.org/10.1038/s41591-023-02332-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Placido, Davide
Yuan, Bo
Hjaltelin, Jessica X.
Zheng, Chunlei
Haue, Amalie D.
Chmura, Piotr J.
Yuan, Chen
Kim, Jihye
Umeton, Renato
Antell, Gregory
Chowdhury, Alexander
Franz, Alexandra
Brais, Lauren
Andrews, Elizabeth
Marks, Debora S.
Regev, Aviv
Ayandeh, Siamack
Brophy, Mary T.
Do, Nhan V.
Kraft, Peter
Wolpin, Brian M.
Rosenthal, Michael H.
Fillmore, Nathanael R.
Brunak, Søren
Sander, Chris
A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories
title A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories
title_full A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories
title_fullStr A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories
title_full_unstemmed A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories
title_short A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories
title_sort deep learning algorithm to predict risk of pancreatic cancer from disease trajectories
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202814/
https://www.ncbi.nlm.nih.gov/pubmed/37156936
http://dx.doi.org/10.1038/s41591-023-02332-5
work_keys_str_mv AT placidodavide adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT yuanbo adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT hjaltelinjessicax adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT zhengchunlei adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT haueamalied adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT chmurapiotrj adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT yuanchen adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT kimjihye adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT umetonrenato adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT antellgregory adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT chowdhuryalexander adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT franzalexandra adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT braislauren adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT andrewselizabeth adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT marksdeboras adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT regevaviv adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT ayandehsiamack adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT brophymaryt adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT donhanv adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT kraftpeter adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT wolpinbrianm adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT rosenthalmichaelh adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT fillmorenathanaelr adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT brunaksøren adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT sanderchris adeeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT placidodavide deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT yuanbo deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT hjaltelinjessicax deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT zhengchunlei deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT haueamalied deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT chmurapiotrj deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT yuanchen deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT kimjihye deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT umetonrenato deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT antellgregory deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT chowdhuryalexander deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT franzalexandra deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT braislauren deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT andrewselizabeth deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT marksdeboras deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT regevaviv deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT ayandehsiamack deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT brophymaryt deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT donhanv deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT kraftpeter deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT wolpinbrianm deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT rosenthalmichaelh deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT fillmorenathanaelr deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT brunaksøren deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories
AT sanderchris deeplearningalgorithmtopredictriskofpancreaticcancerfromdiseasetrajectories