Cargando…
DELMEP: a deep learning algorithm for automated annotation of motor evoked potential latencies
The analysis of motor evoked potentials (MEPs) generated by transcranial magnetic stimulation (TMS) is crucial in research and clinical medical practice. MEPs are characterized by their latency and the treatment of a single patient may require the characterization of thousands of MEPs. Given the dif...
Autores principales: | Milardovich, Diego, Souza, Victor H., Zubarev, Ivan, Tugin, Sergei, Nieminen, Jaakko O., Bigoni, Claudia, Hummel, Friedhelm C., Korhonen, Juuso T., Aydogan, Dogu B., Lioumis, Pantelis, Taherinejad, Nima, Grasser, Tibor, Ilmoniemi, Risto J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203150/ https://www.ncbi.nlm.nih.gov/pubmed/37217502 http://dx.doi.org/10.1038/s41598-023-34801-9 |
Ejemplares similares
-
Effect of stimulus orientation and intensity on short-interval intracortical inhibition (SICI) and facilitation (SICF): A multi-channel transcranial magnetic stimulation study
por: Tugin, Sergei, et al.
Publicado: (2021) -
Multi-locus transcranial magnetic stimulation system for electronically targeted brain stimulation
por: Nieminen, Jaakko O., et al.
Publicado: (2022) -
TMS-evoked changes in brain-state dynamics quantified by using EEG data
por: Mutanen, Tuomas, et al.
Publicado: (2013) -
Local brain-state dependency of effective connectivity: a pilot TMS–EEG study
por: Granö, Ida, et al.
Publicado: (2022) -
Closed-loop optimization of transcranial magnetic stimulation with electroencephalography feedback
por: Tervo, Aino E., et al.
Publicado: (2022)