Cargando…
A novel ambigrammatic mycovirus, PsV5, works hand in glove with wheat stripe rust fungus to facilitate infection
Here we describe a novel narnavirus, Puccinia striiformis virus 5 (PsV5), from the devastating wheat stripe rust fungus P. striiformis f. sp. tritici (Pst). The genome of PsV5 contains two predicted open reading frames (ORFs) that largely overlap on reverse strands: an RNA-dependent RNA polymerase (...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203264/ https://www.ncbi.nlm.nih.gov/pubmed/36527233 http://dx.doi.org/10.1016/j.xplc.2022.100505 |
Sumario: | Here we describe a novel narnavirus, Puccinia striiformis virus 5 (PsV5), from the devastating wheat stripe rust fungus P. striiformis f. sp. tritici (Pst). The genome of PsV5 contains two predicted open reading frames (ORFs) that largely overlap on reverse strands: an RNA-dependent RNA polymerase (RdRp) and a reverse-frame ORF (rORF) with unknown function. Protein translations of both ORFs were demonstrated by immune technology. Transgenic wheat lines overexpressing PsV5 (RdRp-rORF), RdRp ORF, or rORF were more susceptible to Pst infection, whereas PsV5-RNA interference (RNAi) lines were more resistant. Overexpression of PsV5 (RdRp-rORF), RdRp ORF, or rORF in Fusarium graminearum also boosted fungal virulence. We thus report a novel ambigrammatic mycovirus that promotes the virulence of its fungal host. The results are a significant addition to our understanding of virosphere diversity and offer insights for sustainable wheat rust disease control. |
---|