Cargando…
Using remotely monitored patient activity patterns after hospital discharge to predict 30 day hospital readmission: a randomized trial
Hospital readmission prediction models often perform poorly, but most only use information collected until the time of hospital discharge. In this clinical trial, we randomly assigned 500 patients discharged from hospital to home to use either a smartphone or wearable device to collect and transmit...
Autores principales: | Patel, Mitesh S., Volpp, Kevin G., Small, Dylan S., Kanter, Genevieve P., Park, Sae-Hwan, Evans, Chalanda N., Polsky, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203290/ https://www.ncbi.nlm.nih.gov/pubmed/37217585 http://dx.doi.org/10.1038/s41598-023-35201-9 |
Ejemplares similares
-
Predicting changes in glycemic control among adults with prediabetes from activity patterns collected by wearable devices
por: Patel, Mitesh S., et al.
Publicado: (2021) -
Proactive care post-discharge to reduce 30 day readmissions to hospital
por: Choudhury, J., et al.
Publicado: (2022) -
Patients’ and providers’ perspectives on medication relatedness and potential preventability of hospital readmissions within 30 days of discharge
por: Uitvlugt, Elien B., et al.
Publicado: (2019) -
Developing a Predictive Tool for Hospital Discharge Disposition of Patients Poststroke with 30-Day Readmission Validation
por: Cho, Jin, et al.
Publicado: (2021) -
Modelling 30-day hospital readmission after discharge for COPD patients based on electronic health records
por: Li, Meng, et al.
Publicado: (2023)