Cargando…
Decentralized federated learning through proxy model sharing
Institutions in highly regulated domains such as finance and healthcare often have restrictive rules around data sharing. Federated learning is a distributed learning framework that enables multi-institutional collaborations on decentralized data with improved protection for each collaborator’s data...
Autores principales: | Kalra, Shivam, Wen, Junfeng, Cresswell, Jesse C., Volkovs, Maksims, Tizhoosh, H. R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203322/ https://www.ncbi.nlm.nih.gov/pubmed/37217476 http://dx.doi.org/10.1038/s41467-023-38569-4 |
Ejemplares similares
-
Federated learning and differential privacy for medical image analysis
por: Adnan, Mohammed, et al.
Publicado: (2022) -
Detecting model misconducts in decentralized healthcare federated learning
por: Kuo, Tsung-Ting, et al.
Publicado: (2021) -
Decentralized governance and artificial intelligence policy with blockchain-based voting in federated learning
por: Lee, C. Alisdair, et al.
Publicado: (2023) -
SSH-DAuth: secret sharing based decentralized OAuth using decentralized identifier
por: Krishna, Danda Prudhvi, et al.
Publicado: (2023) -
Decentralized Federated Learning for Healthcare Networks: A Case Study on Tumor Segmentation
por: Camajori Tedeschini, Bernardo, et al.
Publicado: (2022)