Cargando…
Theory and rationale of interpretable all-in-one pattern discovery and disentanglement system
In machine learning (ML), association patterns in the data, paths in decision trees, and weights between layers of the neural network are often entangled due to multiple underlying causes, thus masking the pattern-to-source relation, weakening prediction, and defying explanation. This paper presents...
Autores principales: | Wong, Andrew K. C., Zhou, Pei-Yuan, Lee, Annie E.-S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203344/ https://www.ncbi.nlm.nih.gov/pubmed/37217691 http://dx.doi.org/10.1038/s41746-023-00816-9 |
Ejemplares similares
-
Pattern discovery and disentanglement on relational datasets
por: Wong, Andrew K. C., et al.
Publicado: (2021) -
Revealing Subtle Functional Subgroups in Class A Scavenger Receptors by Pattern Discovery and Disentanglement of Aligned Pattern Clusters
por: Zhou, Pei-Yuan, et al.
Publicado: (2018) -
Explanation and prediction of clinical data with imbalanced class distribution based on pattern discovery and disentanglement
por: Zhou, Pei-Yuan, et al.
Publicado: (2021) -
Discovery and disentanglement of aligned residue associations from aligned pattern clusters to reveal subgroup characteristics
por: Zhou, Pei-Yuan, et al.
Publicado: (2018) -
Individuality in harpsichord performance: disentangling performer- and piece-specific influences on interpretive choices
por: Gingras, Bruno, et al.
Publicado: (2013)