Cargando…

Spectroscopic signature of obstructed surface states in SrIn(2)P(2)

The century-long development of surface sciences has witnessed the discoveries of a variety of quantum states. In the recently proposed “obstructed atomic insulators”, symmetric charges are pinned at virtual sites where no real atoms reside. The cleavage through these sites could lead to a set of ob...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiang-Rui, Deng, Hanbin, Liu, Yuntian, Yin, Zhouyi, Chen, Congrun, Zhu, Yu-Peng, Yang, Yichen, Jiang, Zhicheng, Liu, Zhengtai, Ye, Mao, Shen, Dawei, Yin, Jia-Xin, Wang, Kedong, Liu, Qihang, Zhao, Yue, Liu, Chang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203355/
https://www.ncbi.nlm.nih.gov/pubmed/37217499
http://dx.doi.org/10.1038/s41467-023-38589-0
Descripción
Sumario:The century-long development of surface sciences has witnessed the discoveries of a variety of quantum states. In the recently proposed “obstructed atomic insulators”, symmetric charges are pinned at virtual sites where no real atoms reside. The cleavage through these sites could lead to a set of obstructed surface states with partial electronic occupation. Here, utilizing scanning tunneling microscopy, angle-resolved photoemission spectroscopy and first-principles calculations, we observe spectroscopic signature of obstructed surface states in SrIn(2)P(2). We find that a pair of surface states that are originated from the pristine obstructed surface states split in energy by a unique surface reconstruction. The upper branch is marked with a striking differential conductance peak followed by negative differential conductance, signaling its localized nature, while the lower branch is found to be highly dispersive. This pair of surface states is in consistency with our calculational results. Our finding not only demonstrates a surface quantum state induced by a new type of bulk-boundary correspondence, but also provides a platform for exploring efficient catalysts and related surface engineering.