Cargando…
Evaluation of nutritional status and clinical depression classification using an explainable machine learning method
INTRODUCTION: Depression is a prevalent disorder worldwide, with potentially severe implications. It contributes significantly to an increased risk of diseases associated with multiple risk factors. Early accurate diagnosis of depressive symptoms is a critical first step toward management, intervent...
Autores principales: | Hosseinzadeh Kasani, Payam, Lee, Jung Eun, Park, Chihyun, Yun, Cheol-Heui, Jang, Jae-Won, Lee, Sang-Ah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203418/ https://www.ncbi.nlm.nih.gov/pubmed/37229464 http://dx.doi.org/10.3389/fnut.2023.1165854 |
Ejemplares similares
-
An Aggregated-Based Deep Learning Method for Leukemic B-lymphoblast Classification
por: Kasani, Payam Hosseinzadeh, et al.
Publicado: (2020) -
Predicting progression to dementia with “comprehensive visual rating scale” and machine learning algorithms
por: Park, Chaeyoon, et al.
Publicado: (2022) -
Machine learning-based automatic estimation of cortical atrophy using brain computed tomography images
por: Jang, Jae-Won, et al.
Publicado: (2022) -
Relationship between Mediterranean diet and depression in South Korea: the Korea National Health and Nutrition Examination Survey
por: Hwang, Yeong-Geon, et al.
Publicado: (2023) -
Exploring the potentials of sorghum genotypes: a comprehensive study on nutritional qualities, functional metabolites, and antioxidant capacities
por: Lee, Sukyeung, et al.
Publicado: (2023)