Cargando…
LM-DTI: a tool of predicting drug-target interactions using the node2vec and network path score methods
Introduction: Drug-target interaction (DTI) prediction is a key step in drug function discovery and repositioning. The emergence of large-scale heterogeneous biological networks provides an opportunity to identify drug-related target genes, which led to the development of several computational metho...
Autores principales: | Li, Jianwei, Wang, Yinfei, Li, Zhiguang, Lin, Hongxin, Wu, Baoqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203599/ https://www.ncbi.nlm.nih.gov/pubmed/37229202 http://dx.doi.org/10.3389/fgene.2023.1181592 |
Ejemplares similares
-
TLSEA: a tool for lncRNA set enrichment analysis based on multi-source heterogeneous information fusion
por: Li, Jianwei, et al.
Publicado: (2023) -
Prediction of potential small molecule−miRNA associations based on heterogeneous network representation learning
por: Li, Jianwei, et al.
Publicado: (2022) -
iCDI-W2vCom: Identifying the Ion Channel–Drug Interaction in Cellular Networking Based on word2vec and node2vec
por: Zheng, Jie, et al.
Publicado: (2021) -
Prediction of Drug–Gene Interaction by Using Metapath2vec
por: Zhu, Siyi, et al.
Publicado: (2018) -
DTi2Vec: Drug–target interaction prediction using network embedding and ensemble learning
por: Thafar, Maha A., et al.
Publicado: (2021)