Cargando…
Developing a machine-learning model for real-time prediction of successful extubation in mechanically ventilated patients using time-series ventilator-derived parameters
BACKGROUND: Successful weaning from mechanical ventilation is important for patients admitted to intensive care units. However, models for predicting real-time weaning outcomes remain inadequate. Therefore, this study aimed to develop a machine-learning model for predicting successful extubation onl...
Autores principales: | Huang, Kuo-Yang, Hsu, Ying-Lin, Chen, Huang-Chi, Horng, Ming-Hwarng, Chung, Che-Liang, Lin, Ching-Hsiung, Xu, Jia-Lang, Hou, Ming-Hon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203709/ https://www.ncbi.nlm.nih.gov/pubmed/37228399 http://dx.doi.org/10.3389/fmed.2023.1167445 |
Ejemplares similares
-
Machine learning for predicting successful extubation in patients receiving mechanical ventilation
por: Igarashi, Yutaka, et al.
Publicado: (2022) -
Successful Extubation After Weaning Failure by Noninvasive Ventilation in Patients With Neuromuscular Disease: Case Series
por: Kim, Sun Mi, et al.
Publicado: (2017) -
Noninvasive ventilation after extubation
por: Prat, Dominique, et al.
Publicado: (2017) -
No association between thickening fraction of the diaphragm and extubation success in ventilated children
por: Duyndam, Anita, et al.
Publicado: (2023) -
Handgrip strength cutoff value predicting successful extubation in mechanically ventilated patients
por: Saiphoklang, Narongkorn, et al.
Publicado: (2021)