Cargando…

Brain matters: unveiling the distinct contributions of region, age, and sex to glia diversity and CNS function

The myelinated white matter tracts of the central nervous system (CNS) are essential for fast transmission of electrical impulses and are often differentially affected in human neurodegenerative diseases across CNS region, age and sex. We hypothesize that this selective vulnerability is underpinned...

Descripción completa

Detalles Bibliográficos
Autores principales: Seeker, Luise A., Bestard-Cuche, Nadine, Jäkel, Sarah, Kazakou, Nina-Lydia, Bøstrand, Sunniva M. K., Wagstaff, Laura J., Cholewa-Waclaw, Justyna, Kilpatrick, Alastair M., Van Bruggen, David, Kabbe, Mukund, Baldivia Pohl, Fabio, Moslehi, Zahra, Henderson, Neil C., Vallejos, Catalina A., La Manno, Gioele, Castelo-Branco, Goncalo, Williams, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10204264/
https://www.ncbi.nlm.nih.gov/pubmed/37217978
http://dx.doi.org/10.1186/s40478-023-01568-z
Descripción
Sumario:The myelinated white matter tracts of the central nervous system (CNS) are essential for fast transmission of electrical impulses and are often differentially affected in human neurodegenerative diseases across CNS region, age and sex. We hypothesize that this selective vulnerability is underpinned by physiological variation in white matter glia. Using single nucleus RNA sequencing of human post-mortem white matter samples from the brain, cerebellum and spinal cord and subsequent tissue-based validation we found substantial glial heterogeneity with tissue region: we identified region-specific oligodendrocyte precursor cells (OPCs) that retain developmental origin markers into adulthood, distinguishing them from mouse OPCs. Region-specific OPCs give rise to similar oligodendrocyte populations, however spinal cord oligodendrocytes exhibit markers such as SKAP2 which are associated with increased myelin production and we found a spinal cord selective population particularly equipped for producing long and thick myelin sheaths based on the expression of genes/proteins such as HCN2. Spinal cord microglia exhibit a more activated phenotype compared to brain microglia, suggesting that the spinal cord is a more pro-inflammatory environment, a difference that intensifies with age. Astrocyte gene expression correlates strongly with CNS region, however, astrocytes do not show a more activated state with region or age. Across all glia, sex differences are subtle but the consistent increased expression of protein-folding genes in male donors hints at pathways that may contribute to sex differences in disease susceptibility. These findings are essential to consider for understanding selective CNS pathologies and developing tailored therapeutic strategies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40478-023-01568-z.