Cargando…
Can Machine Learning Be Better than Biased Readers?
Background: Training machine learning (ML) models in medical imaging requires large amounts of labeled data. To minimize labeling workload, it is common to divide training data among multiple readers for separate annotation without consensus and then combine the labeled data for training a ML model....
Autores principales: | Hibi, Atsuhiro, Zhu, Rui, Tyrrell, Pascal N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10204355/ https://www.ncbi.nlm.nih.gov/pubmed/37218934 http://dx.doi.org/10.3390/tomography9030074 |
Ejemplares similares
-
Reporting guidelines: doing better for readers
por: Moher, David
Publicado: (2018) -
Automated screening of computed tomography using weakly supervised anomaly detection
por: Hibi, Atsuhiro, et al.
Publicado: (2023) -
Better Than I Thought: Positive Evaluation Bias in Hypomania
por: Mason, Liam, et al.
Publicado: (2012) -
Can machine learning algorithms perform better than multiple linear regression in predicting nitrogen excretion from lactating dairy cows
por: Chen, Xianjiang, et al.
Publicado: (2022) -
Machine-learning media bias
por: D’Alonzo, Samantha, et al.
Publicado: (2022)