Cargando…

An Effective Image-Based Tomato Leaf Disease Segmentation Method Using MC-UNet

Tomato disease control is an urgent requirement in the field of intellectual agriculture, and one of the keys to it is quantitative identification and precise segmentation of tomato leaf diseases. Some diseased areas on tomato leaves are tiny and may go unnoticed during segmentation. Blurred edge al...

Descripción completa

Detalles Bibliográficos
Autores principales: Deng, Yubao, Xi, Haoran, Zhou, Guoxiong, Chen, Aibin, Wang, Yanfeng, Li, Liujun, Hu, Yahui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10204749/
https://www.ncbi.nlm.nih.gov/pubmed/37228512
http://dx.doi.org/10.34133/plantphenomics.0049
Descripción
Sumario:Tomato disease control is an urgent requirement in the field of intellectual agriculture, and one of the keys to it is quantitative identification and precise segmentation of tomato leaf diseases. Some diseased areas on tomato leaves are tiny and may go unnoticed during segmentation. Blurred edge also makes the segmentation accuracy poor. Based on UNet, we propose an effective image-based tomato leaf disease segmentation method called Cross-layer Attention Fusion Mechanism combined with Multi-scale Convolution Module (MC-UNet). First, a Multi-scale Convolution Module is proposed. This module obtains multiscale information about tomato disease by employing 3 convolution kernels of different sizes, and it highlights the edge feature information of tomato disease using the Squeeze-and-Excitation Module. Second, a Cross-layer Attention Fusion Mechanism is proposed. This mechanism highlights tomato leaf disease locations via gating structure and fusion operation. Then, we employ SoftPool rather than MaxPool to retain valid information on tomato leaves. Finally, we use the SeLU function appropriately to avoid network neuron dropout. We compared MC-UNet to the existing segmentation network on our self-built tomato leaf disease segmentation dataset and MC-UNet achieved 91.32% accuracy and 6.67M parameters. Our method achieves good results for tomato leaf disease segmentation, which demonstrates the effectiveness of the proposed methods.