Cargando…
System Derived Spatial-Temporal CNN for High-Density fNIRS BCI
An intuitive and generalisable approach to spatial-temporal feature extraction for high-density (HD) functional Near-Infrared Spectroscopy (fNIRS) brain-computer interface (BCI) is proposed, demonstrated here using Frequency-Domain (FD) fNIRS for motor-task classification. Enabled by the HD probe de...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10204936/ https://www.ncbi.nlm.nih.gov/pubmed/37228451 http://dx.doi.org/10.1109/OJEMB.2023.3248492 |
Ejemplares similares
-
LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI
por: Gulraiz, Asma, et al.
Publicado: (2022) -
Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review
por: Khan, Haroon, et al.
Publicado: (2021) -
OptEF-BCI: An Optimization-Based Hybrid EEG and fNIRS–Brain Computer Interface
por: Ali, Muhammad Umair, et al.
Publicado: (2023) -
Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks
por: Hamid, Huma, et al.
Publicado: (2022) -
A Computationally Efficient Method for Hybrid EEG-fNIRS BCI Based on the Pearson Correlation
por: Hasan, Mustafa A. H., et al.
Publicado: (2020)