Cargando…
Clinical evaluation of a deep learning segmentation model including manual adjustments afterwards for locally advanced breast cancer
INTRODUCTION: Deep learning (DL) models are increasingly developed for auto-segmentation in radiotherapy. Qualitative analysis is of great importance for clinical implementation, next to quantitative. This study evaluates a DL segmentation model for left- and right-sided locally advanced breast canc...
Autores principales: | Bakx, Nienke, Rijkaart, Dorien, van der Sangen, Maurice, Theuws, Jacqueline, van der Toorn, Peter-Paul, Verrijssen, An-Sofie, van der Leer, Jorien, Mutsaers, Joline, van Nunen, Thérèse, Reinders, Marjon, Schuengel, Inge, Smits, Julia, Hagelaar, Els, van Gruijthuijsen, Dave, Bluemink, Hanneke, Hurkmans, Coen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10205480/ https://www.ncbi.nlm.nih.gov/pubmed/37229460 http://dx.doi.org/10.1016/j.tipsro.2023.100211 |
Ejemplares similares
-
Clinical evaluation of two AI models for automated breast cancer plan generation
por: Kneepkens, Esther, et al.
Publicado: (2022) -
Reduction of heart and lung normal tissue complication probability using automatic beam angle optimization and more generic optimization objectives for breast radiotherapy
por: Bakx, Nienke, et al.
Publicado: (2021) -
Development and evaluation of radiotherapy deep learning dose prediction models for breast cancer
por: Bakx, Nienke, et al.
Publicado: (2021) -
Comparison of the output of a deep learning segmentation model for locoregional breast cancer radiotherapy trained on 2 different datasets
por: Bakx, Nienke, et al.
Publicado: (2023) -
Artificial intelligence based treatment planning of radiotherapy for locally advanced breast cancer
por: van de Sande, Dennis, et al.
Publicado: (2021)