Cargando…
GIS-based data-driven bivariate statistical models for landslide susceptibility prediction in Upper Tista Basin, India
Predicting landslides is becoming a crucial global challenge for sustainable development in mountainous areas. This research compares the landslide susceptibility maps (LSMs) prepared from five GIS-based data-driven bivariate statistical models, namely, (a) Frequency Ratio (FR), (b) Index of Entropy...
Autores principales: | Das, Jayanta, Saha, Pritam, Mitra, Rajib, Alam, Asraful, Kamruzzaman, Md |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10205644/ https://www.ncbi.nlm.nih.gov/pubmed/37234665 http://dx.doi.org/10.1016/j.heliyon.2023.e16186 |
Ejemplares similares
-
Application of TOPSIS method for flood susceptibility mapping using Excel and GIS
por: Mitra, Rajib, et al.
Publicado: (2023) -
Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment
por: Shahabi, Himan, et al.
Publicado: (2015) -
An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping
por: Feizizadeh, Bakhtiar, et al.
Publicado: (2014) -
Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping
por: Shirzadi, Ataollah, et al.
Publicado: (2018) -
A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping
por: Feizizadeh, Bakhtiar, et al.
Publicado: (2014)