Cargando…
Semantic modeling of cell damage prediction: a machine learning approach at human-level performance in dermatology
Machine learning is transforming the field of histopathology. Especially in classification related tasks, there have been many successful applications of deep learning already. Yet, in tasks that rely on regression and many niche applications, the domain lacks cohesive procedures that are adapted to...
Autores principales: | Wagner, Patrick, Springenberg, Maximilian, Kröger, Marius, Moritz, Rose K. C., Schleusener, Johannes, Meinke, Martina C., Ma, Jackie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10205740/ https://www.ncbi.nlm.nih.gov/pubmed/37221254 http://dx.doi.org/10.1038/s41598-023-35370-7 |
Ejemplares similares
-
Label-free imaging of M1 and M2 macrophage phenotypes in the human dermis in vivo using two-photon excited FLIM
por: Kröger, Marius, et al.
Publicado: (2022) -
Atopic Dermatitis: Molecular Alterations between Lesional and Non-Lesional Skin Determined Noninvasively by In Vivo Confocal Raman Microspectroscopy
por: Zolotas, Michael, et al.
Publicado: (2023) -
Red- and Near-Infrared-Excited Autofluorescence as a Marker for Acute Oxidative Stress in Skin Exposed to Cigarette Smoke Ex Vivo and In Vivo
por: Tran, Phuong Thao, et al.
Publicado: (2023) -
Semantic similarity and machine learning with ontologies
por: Kulmanov, Maxat, et al.
Publicado: (2020) -
Review of Machine Learning in Predicting Dermatological Outcomes
por: Du, Amy X., et al.
Publicado: (2020)