Cargando…

Computational models of episodic-like memory in food-caching birds

Birds of the crow family adapt food-caching strategies to anticipated needs at the time of cache recovery and rely on memory of the what, where and when of previous caching events to recover their hidden food. It is unclear if this behavior can be explained by simple associative learning or if it re...

Descripción completa

Detalles Bibliográficos
Autores principales: Brea, Johanni, Clayton, Nicola S., Gerstner, Wulfram
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10205804/
https://www.ncbi.nlm.nih.gov/pubmed/37221167
http://dx.doi.org/10.1038/s41467-023-38570-x
Descripción
Sumario:Birds of the crow family adapt food-caching strategies to anticipated needs at the time of cache recovery and rely on memory of the what, where and when of previous caching events to recover their hidden food. It is unclear if this behavior can be explained by simple associative learning or if it relies on higher cognitive processes like mental time-travel. We present a computational model and propose a neural implementation of food-caching behavior. The model has hunger variables for motivational control, reward-modulated update of retrieval and caching policies and an associative neural network for remembering caching events with a memory consolidation mechanism for flexible decoding of the age of a memory. Our methodology of formalizing experimental protocols is transferable to other domains and facilitates model evaluation and experiment design. Here, we show that memory-augmented, associative reinforcement learning without mental time-travel is sufficient to explain the results of 28 behavioral experiments with food-caching birds.