Cargando…

Therapeutic Potential of HMF and Its Derivatives: a Computational Study

Over the past century, chemicals and energy have increasingly been derived from non-renewable resources. The growing demand for essential chemicals and shrinking inventory make reliable, sustainable sources essential. Carbohydrates offer by far the greatest carbon supply. Furan compounds, a particul...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Shashank Kumar, Sasmal, Soumya, Kumar, Yatender
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10206368/
https://www.ncbi.nlm.nih.gov/pubmed/37223872
http://dx.doi.org/10.1007/s12010-023-04547-1
Descripción
Sumario:Over the past century, chemicals and energy have increasingly been derived from non-renewable resources. The growing demand for essential chemicals and shrinking inventory make reliable, sustainable sources essential. Carbohydrates offer by far the greatest carbon supply. Furan compounds, a particular family of dehydration products, are believed to offer high chemical potential. Here, we analyze 5-HMF (5, hydroxymethylfurfural) and some of its derivatives in particular, a furan-type platform chemical. To analyze the therapeutic potential of HMF and its derivatives, this study utilized cutting-edge technologies such as computer-aided drug design, virtual screening, molecular docking, and molecular dynamic simulation. We conducted 189 docking simulations and examined some of the most promising dock poses using the molecular dynamic simulator. As for the receptors for our compounds, the leading candidates are human acetylcholinesterase, beta-lactamases, P. aeruginosa LasR, and S. aureus tyrosyl-tRNA synthetases. Out of all derivatives considered in this study, 2,5-furandicarboxylic acid (FCA) performed best. GRAPHICAL ABSTRACT: [Image: see text]