Cargando…
Modeling breast cancer proliferation, drug synergies, and alternating therapies
Estrogen receptor positive (ER+) breast cancer is responsive to a number of targeted therapies used clinically. Unfortunately, the continuous application of targeted therapy often results in resistance, driving the consideration of combination and alternating therapies. Toward this end, we developed...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10206440/ https://www.ncbi.nlm.nih.gov/pubmed/37234088 http://dx.doi.org/10.1016/j.isci.2023.106714 |
_version_ | 1785046231632838656 |
---|---|
author | He, Wei Demas, Diane M. Shajahan-Haq, Ayesha N. Baumann, William T. |
author_facet | He, Wei Demas, Diane M. Shajahan-Haq, Ayesha N. Baumann, William T. |
author_sort | He, Wei |
collection | PubMed |
description | Estrogen receptor positive (ER+) breast cancer is responsive to a number of targeted therapies used clinically. Unfortunately, the continuous application of targeted therapy often results in resistance, driving the consideration of combination and alternating therapies. Toward this end, we developed a mathematical model that can simulate various mono, combination, and alternating therapies for ER + breast cancer cells at different doses over long time scales. The model is used to look for optimal drug combinations and predicts a significant synergism between Cdk4/6 inhibitors in combination with the anti-estrogen fulvestrant, which may help explain the clinical success of adding Cdk4/6 inhibitors to anti-estrogen therapy. Furthermore, the model is used to optimize an alternating treatment protocol so it works as well as monotherapy while using less total drug dose. |
format | Online Article Text |
id | pubmed-10206440 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-102064402023-05-25 Modeling breast cancer proliferation, drug synergies, and alternating therapies He, Wei Demas, Diane M. Shajahan-Haq, Ayesha N. Baumann, William T. iScience Article Estrogen receptor positive (ER+) breast cancer is responsive to a number of targeted therapies used clinically. Unfortunately, the continuous application of targeted therapy often results in resistance, driving the consideration of combination and alternating therapies. Toward this end, we developed a mathematical model that can simulate various mono, combination, and alternating therapies for ER + breast cancer cells at different doses over long time scales. The model is used to look for optimal drug combinations and predicts a significant synergism between Cdk4/6 inhibitors in combination with the anti-estrogen fulvestrant, which may help explain the clinical success of adding Cdk4/6 inhibitors to anti-estrogen therapy. Furthermore, the model is used to optimize an alternating treatment protocol so it works as well as monotherapy while using less total drug dose. Elsevier 2023-04-23 /pmc/articles/PMC10206440/ /pubmed/37234088 http://dx.doi.org/10.1016/j.isci.2023.106714 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article He, Wei Demas, Diane M. Shajahan-Haq, Ayesha N. Baumann, William T. Modeling breast cancer proliferation, drug synergies, and alternating therapies |
title | Modeling breast cancer proliferation, drug synergies, and alternating therapies |
title_full | Modeling breast cancer proliferation, drug synergies, and alternating therapies |
title_fullStr | Modeling breast cancer proliferation, drug synergies, and alternating therapies |
title_full_unstemmed | Modeling breast cancer proliferation, drug synergies, and alternating therapies |
title_short | Modeling breast cancer proliferation, drug synergies, and alternating therapies |
title_sort | modeling breast cancer proliferation, drug synergies, and alternating therapies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10206440/ https://www.ncbi.nlm.nih.gov/pubmed/37234088 http://dx.doi.org/10.1016/j.isci.2023.106714 |
work_keys_str_mv | AT hewei modelingbreastcancerproliferationdrugsynergiesandalternatingtherapies AT demasdianem modelingbreastcancerproliferationdrugsynergiesandalternatingtherapies AT shajahanhaqayeshan modelingbreastcancerproliferationdrugsynergiesandalternatingtherapies AT baumannwilliamt modelingbreastcancerproliferationdrugsynergiesandalternatingtherapies |