Cargando…
Modelling communication-enabled traffic interactions
A major challenge for autonomous vehicles is handling interactions with human-driven vehicles—for example, in highway merging. A better understanding and computational modelling of human interactive behaviour could help address this challenge. However, existing modelling approaches predominantly neg...
Autores principales: | Siebinga, O., Zgonnikov, A., Abbink, D. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10206467/ https://www.ncbi.nlm.nih.gov/pubmed/37234489 http://dx.doi.org/10.1098/rsos.230537 |
Ejemplares similares
-
Spatial-temporal hypergraph convolutional network for traffic forecasting
por: Zhao, Zhenzhen, et al.
Publicado: (2023) -
Federated learning enables intelligent reflecting surface in fog-cloud enabled cellular network
por: Lakhan, Abdullah, et al.
Publicado: (2021) -
Spatio-temporal causal graph attention network for traffic flow prediction in intelligent transportation systems
por: Zhao, Wei, et al.
Publicado: (2023) -
Human Autonomy in Future Drone Traffic: Joint Human–AI Control in Temporal Cognitive Work
por: Lundberg, Jonas, et al.
Publicado: (2021) -
An internet traffic classification method based on echo state network and improved salp swarm algorithm
por: Zhang, Meijia, et al.
Publicado: (2022)