Cargando…
Evaluating Listening Performance for COVID-19 Detection by Clinicians and Machine Learning: Comparative Study
BACKGROUND: To date, performance comparisons between men and machines have been carried out in many health domains. Yet machine learning (ML) models and human performance comparisons in audio-based respiratory diagnosis remain largely unexplored. OBJECTIVE: The primary objective of this study was to...
Autores principales: | Han, Jing, Montagna, Marco, Grammenos, Andreas, Xia, Tong, Bondareva, Erika, Siegele-Brown, Chloë, Chauhan, Jagmohan, Dang, Ting, Spathis, Dimitris, Floto, R Andres, Cicuta, Pietro, Mascolo, Cecilia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10206619/ https://www.ncbi.nlm.nih.gov/pubmed/37126593 http://dx.doi.org/10.2196/44804 |
Ejemplares similares
-
Exploring Longitudinal Cough, Breath, and Voice Data for COVID-19 Progression Prediction via Sequential Deep Learning: Model Development and Validation
por: Dang, Ting, et al.
Publicado: (2022) -
Sounds of COVID-19: exploring realistic performance of audio-based digital testing
por: Han, Jing, et al.
Publicado: (2022) -
A summary of the ComParE COVID-19 challenges
por: Coppock, Harry, et al.
Publicado: (2023) -
Human-centred artificial intelligence for mobile health sensing: challenges and opportunities
por: Dang, Ting, et al.
Publicado: (2023) -
Breaking away from labels: The promise of self-supervised machine learning in intelligent health
por: Spathis, Dimitris, et al.
Publicado: (2022)