Cargando…
Deep learning to diagnose left ventricular hypertrophy from standard, 12-lead ECG signals: a proof-of-concept study
FUNDING ACKNOWLEDGEMENTS: Type of funding sources: None. BACKGROUND: Although several sets of voltage and non-voltage criteria have been employed to detect left ventricular hypertrophy (LVH) in 12-lead electrocardiogram (ECG) signals, their accuracy has been proven suboptimal, while their use is lim...
Autores principales: | Pantelidis, P, Oikonomou, E, Souvaliotis, N, Spartalis, M, Lampsas, S, Bampa, M, Bakogiannis, C, Antonopoulos, A, Siasos, G, Vavuranakis, M, Papapetrou, P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10206736/ http://dx.doi.org/10.1093/europace/euad122.534 |
Ejemplares similares
-
Assessment of the atrial fibrillation burden in Holter ECG recordings using artificial intelligence
por: Hennings, E, et al.
Publicado: (2023) -
Feasibility of artificial intelligence-enhanced electrocardiogram (AI-ECG) analysis in the current clinical environment: An online survey
por: Bodagh, N, et al.
Publicado: (2023) -
Atrial fibrillation detection using the ECG signal in the left in ear region: validation study on patients electively admitted for DC cardioversion
por: De Lucia, R, et al.
Publicado: (2023) -
Improved patient selection for primary prevention ICD implantation by predicting ICD non-benefit using artificial intelligence
por: Kolk, M Z H, et al.
Publicado: (2023) -
Analysis of the Amplified P-Wave or Artificial Intelligence-Derived P-wave-Analysis Enable Identification of Patients with Atrial Fibrillation during Sinus Rhythm
por: Jadidi, A, et al.
Publicado: (2023)