Cargando…
Assessment of the atrial fibrillation burden in Holter ECG recordings using artificial intelligence
FUNDING ACKNOWLEDGEMENTS: Type of funding sources: Foundation. Main funding source(s): Swiss National Science Foundation, Swiss Heart Foundation BACKGROUND: Emerging evidence indicates that a high atrial fibrillation (AF) burden is associated with adverse outcome. However, AF burden is not routinely...
Autores principales: | Hennings, E, Coslovsky, M, Paladini, R E, Aeschbacher, S, Knecht, S, Schlageter, V, Krisai, P, Badertscher, P, Sticherling, C, Osswald, S, Kuehne, M, Zuern, C S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207033/ http://dx.doi.org/10.1093/europace/euad122.528 |
Ejemplares similares
-
Deep learning to diagnose left ventricular hypertrophy from standard, 12-lead ECG signals: a proof-of-concept study
por: Pantelidis, P, et al.
Publicado: (2023) -
Feasibility of artificial intelligence-enhanced electrocardiogram (AI-ECG) analysis in the current clinical environment: An online survey
por: Bodagh, N, et al.
Publicado: (2023) -
Atrial fibrillation detection using the ECG signal in the left in ear region: validation study on patients electively admitted for DC cardioversion
por: De Lucia, R, et al.
Publicado: (2023) -
Evaluation of a fully automated anatomical left atrial mapping pipeline enabled by artficial intelligence
por: Buytaert, D, et al.
Publicado: (2023) -
Improved patient selection for primary prevention ICD implantation by predicting ICD non-benefit using artificial intelligence
por: Kolk, M Z H, et al.
Publicado: (2023)